Application Note
Flip-Chip PBGA Package Construction—Assembly and Board-Level Reliability

Motorola introduced the flip-chip plastic ball grid array (FC PBGA) packages as an alternative to, and in some cases a replacement package for, PowerPC™ microprocessors and related chips that are currently packaged predominately in ceramic BGA (CBGA). This application note is designed to assist both current CBGA and first time BGA users to reliably deploy Motorola's FC PBGA technology into their assembly processes and products from an interconnect perspective.

1.1 General Package Information

The FC PBGA has a similar general configuration to the CBGA, but there are several major differences in the packages. The two most significant differences are as follows:

- The FC PBGA is based on an epoxy/glass organic, as opposed to a ceramic substrate
- The FC PBGA uses 62Sn36Pb2Ag solder balls that melt in the solder reflow process, while the CBGA uses 90Pb10Sn solder balls.

A cross-section of each package type is shown in Figure 1 through Figure 4 and includes higher magnification cross-sections of the two solder-ball types. Additionally, because the PBGA package employs near-eutectic solder balls, there is no eutectic solder paste volume requirement for assembly, as compared with the CBGA package. For successful FC PBGA assembly, solder paste or flux must be successfully applied to each motherboard pad.

The CBGA is qualified to JEDEC moisture sensitivity level (MSL 1), meaning it is resistant to moisture-induced damage during reflow. The epoxy/glass substrate of the FC PBGA results in the package being moisture sensitive. The FC PBGA is currently qualified to MSL 3. FC PBGA devices are shipped dry-packed and after the drypack is opened, packages must either be stored at less than 20%RH or soldered within 168 hrs of exposure to 30°C/60%RH. Packages that are not soldered within 168 hrs must be baked for 24 hrs at 125°C prior to assembly. Table 1 outlines the major differences between the two package types.

© Freescale Semiconductor, Inc., 2004. All rights reserved.
General Package Information

Table 1. Comparison of Motorola’s FC PBGA and CBGA Packages

<table>
<thead>
<tr>
<th>Package Attribute</th>
<th>Flip-Chip PBGA</th>
<th>CBGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate dielectric material</td>
<td>Epoxy/Glass</td>
<td>Ceramic (Alumina - Al_2O_3)</td>
</tr>
<tr>
<td>Substrate CTE (ppm/°C)</td>
<td>12 to 14</td>
<td>6.7</td>
</tr>
<tr>
<td>Solder ball composition (weight %)</td>
<td>62Sn36Pb2Ag</td>
<td>10Sn90Pb1</td>
</tr>
<tr>
<td>Solder ball diameter (mm)</td>
<td>0.76</td>
<td>0.86</td>
</tr>
<tr>
<td>Package solder pad diameter (mm)</td>
<td>0.64</td>
<td>0.86</td>
</tr>
<tr>
<td>Package solder pad type</td>
<td>Soldermask Defined (SMD)</td>
<td>Metallization Defined</td>
</tr>
<tr>
<td>Entire solder ball reflows during assembly</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Solder ball liquidus (°C)</td>
<td>189</td>
<td>302</td>
</tr>
<tr>
<td>Solder ball solidus (°C)</td>
<td>179</td>
<td>275</td>
</tr>
<tr>
<td>Recommended motherboard solder pad solderable surface diameter (mm)</td>
<td>0.58 (or 23.0 mils)</td>
<td>0.72 (or 28.5 mils)</td>
</tr>
<tr>
<td>Optional motherboard solder pad solderable surface diameter (mm)</td>
<td>0.72</td>
<td>0.58</td>
</tr>
<tr>
<td>Solder paste volumes required for motherboard assembly (mm3)</td>
<td>No min. Must only apply flux or paste to each solder pad</td>
<td>Minimum of 0.079 Nominal of 0.115</td>
</tr>
<tr>
<td>JEDEC moisture sensitivity level (MSL)</td>
<td>MSL3</td>
<td>MSL12</td>
</tr>
<tr>
<td>Allowable out of dry-pack storage conditions to avoid bake-out before reflow</td>
<td>≤20%RH for Up to One Year</td>
<td>Any condition because MSL1</td>
</tr>
<tr>
<td>Bake-out time before reflow (for parts violating out-of-drypack time)</td>
<td>24 hrs at 125°C</td>
<td>Not applicable because MSL1</td>
</tr>
<tr>
<td>Recommended assembly reflow profile</td>
<td>Solder-paste dependent</td>
<td>Solder-paste dependent</td>
</tr>
<tr>
<td>Qualified maximum reflow temperature (°C)</td>
<td>220-0/+5 (3 passes)</td>
<td>220-0/+5 (3 passes)</td>
</tr>
<tr>
<td>Specified maximum coplanarity (mm)</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Body size for given pin counts</td>
<td>503 pin (33 mm)</td>
<td>503 pin (32.5 mm)</td>
</tr>
<tr>
<td></td>
<td>360 pin (25 mm)</td>
<td>360 pin (25 mm)</td>
</tr>
<tr>
<td></td>
<td>265 pin (21 mm)</td>
<td>255 pin (21 mm)</td>
</tr>
</tbody>
</table>

1 Ball attached to package with 63Sn37Pb solder

2 Not moisture sensitive—can be out of dry-pack indefinitely before reflow
Figure 1 through Figure 4 show a cross-section of each package type.

NOTE:
Figure 1 and Figure 3 do not show the die and are not approximately proportional. Solder joint pictures are only approximately proportional.

Figure 1. FC PBGA Package Mounted to a Board

Figure 2. FC PBGA Solder Joint
General Package Information

Figure 3. CBGA Package Mounted to a Board

Figure 4. CBGA Solder Joint
1.2 Motherboard Solder Pad Geometries

Figure 5 and Figure 6 contain the recommended solder pad geometries for the FC PBGA and the CBGA, respectively. A pad with a 0.58 mm diameter solderable surface that is 0.05 mm smaller than the 0.635 mm package pad is recommended for the FC PBGA. The preferred CBGA pad is larger with a diameter of 0.72 mm. For maximum solder joint reliability, it is recommended to maintain the solder pad diameter within the range shown (0.72±0.037). However, board-mounted solder joint reliability data in 0 to 100°C thermal cycling on a CBGA using a PBGA-sized motherboard pad shows that reliability is not impacted greatly; see Section 1.3, “Surface Mount Assembly.” Even when the smaller motherboard pad is used for the CBGA, a minimum solder paste volume of 0.079 mm³ (see Table 1) must be applied to each pad during board assembly.

Note that the pads shown in both Figure 5 and Figure 6 are non-soldermask (NSMD) or etch defined. They have an annular soldermask clearance of 0.075 mm around the copper pad. This configuration is recommended for the best solderability, especially when a hot air solder leveled (HASL) surface finish is used. However, there are other factors that affect what motherboard pad type is chosen. The NSMD pad is best for solderability, but because it has a smaller copper diameter than an SMD pad and does not have the added strength provided by the soldermask overlap, it may be weaker. It may be more likely to fail during bending, severe ramp rate thermal cycling, component rework or site dress after rework. Failure can occur by the pad lifting out of the board or by the trace cracking where it enters the pad, especially if the trace has a width of less than 0.30 mm.

The via and via-pad diameters shown in Figure 5 and Figure 6, as well as soldermask clearances, can be adjusted as necessary to meet individual design rules. The interstitial plated through-hole diameter is shown as 0.30 mm for CBGA and greater than or equal to that for the FC PBGA. A via size increase may be possible due to the decreased solder pad diameter associated with the FC PBGA. Soldermask clearance around the solder pad should be specified such that soldermask does not encroach on the pad at the worst-case soldermask to artwork registration tolerance of the printed circuit board fabricator. The surface finish for CBGA or FC PBGA may be any consistently solderable surface such as organic solderability protectant (OSP), HASL, electroless or electrolytic nickel/gold or immersion silver.

Figure 5. Recommended FC PBGA Motherboard Solder Pad Geometry
1.3 Surface Mount Assembly

The board assembly process for FC PBGA is basically the same as for CBGA with a couple of exceptions. Due to its high-Pb content solder ball, the CBGA has very specific solder paste volume requirements while the FC PBGA has none. The CBGA’s minimum volume of 0.079 mm³ equates to a 0.15 mm thick stencil with 0.84 mm diameter apertures. Another difference may be in the profiling and zone settings of the reflow furnace. The CBGA has a much higher thermal mass than the PBGA; therefore, it may be the coolest part on a given assembly. Both part types should be profiled along with other suspected low and high temperature packages on the board. For the BGAs, this is accomplished by placing a thermocouple under the part, preferably within the solder joint, surrounded by thermally conductive grease or epoxy.

The reflow profile for both package types should follow the recommendations of the solder paste supplier. Neither package has a required reflow profile, and both packages are qualified to a maximum reflow temperature of 225°C. In general, it is recommended that the profile have a preheat sufficient to raise temperature of the joints to 100°C over a period of no less than 50 seconds. Too long of a rise time can cause the flux or solder paste to dry out and reduce its effectiveness. The peak temperature on any component should generally be between a minimum of 205°C and a maximum 220°C. It is recommended that the dwell time be less than two minutes above 183°C. The desirable dwell time above 183°C is greater than 50 seconds and less than 80 seconds.

With regard to component placement using automated pick and place equipment, the solder balls on the two BGA types are easily recognized by most vision systems. The solder ball diameter, grayness (due to the different Pb content), and package body colors are different for FC PBGA and CBGA, so adjustments may be necessary to certain vision parameters. Alignment can take place off of the solder balls or the package body for either package type. It should be noted that due to JEDEC registrational differences, the body size for a given pin count may be slightly different for FC PBGA versus CBGA. See the last line of Table 1 for specific information.
1.4 Board-Level Reliability

The two package types behave quite differently with regard to the solder joint’s ability to withstand repeated board-mounted thermal cycles. The CBGA substrate, with a coefficient of thermal expansion (CTE) of 6.7 ppm/°C, is mismatched to most epoxy/glass motherboards which have a CTE of around 16 to 22 ppm/°C. This package to motherboard expansion difference causes the solder balls at the CBGA corners followed by the edge to fail first in repeated board-level thermal cycling.

The silicon die itself has a CTE of 2.6 ppm/°C that results in a mismatch with respect to the ceramic substrate. However, because the ceramic is relatively stiff, the die has minimal influence on the CBGA solder joints. The reliability of the interconnection between the die and ceramic substrate (in effect, the bumps) is excellent due to the presence of an underfill.

Figure 7 shows two-parameter Weibull plot of the board-level reliability of the Motorola XPC107 503-pin CBGA with a 32.5 mm body size cycled from 0 to 100°C while mounted to a 1.57 mm thick, four-layer test board. Data is supplied using both the CBGA and PBGA-sized pads. Both cases used a solder-paste volume of 0.079 mm3.
Motorola has extensive board-level reliability data on every CBGA body size used for products. Figure 7 contains solder-joint reliability data for the 503-pin, 32.5 mm body Motorola XPC107 mounted to a 1.57-mm thick, four-copper-layer FR-402 epoxy/glass test board that is thermally cycled from 0 to 100°C with five-minute ramps and ten-minute dwells. This is currently the largest CBGA body size offered by Motorola, see package drawing in Figure 8. This package contains seven perimeter rows of solder balls with an 11x11 array depopulated in the center. The board-level failure data in Figure 7 is plotted on two parameter Weibull axes, and data is presented for both the CBGA and PBGA preferred motherboard pad sizes of 0.72 and 0.58 mm, respectively. Each point on the lines represents a package failure which is defined as the series resistance through all the joints going over 300 Ohms during continuous in-situ monitoring. The PBGA recommended pad actually has a higher Eta or cycles to 63.2% failure, but due to the lower slope of the line (Beta) for the PBGA-sized pad, the cycles to failure for lower failure rates such as 0.1% and 0.01% are somewhat worse for this optional pad.

Conversely to the CBGA, the FC PBGA’s epoxy/glass substrate is well matched in terms of expansion to most motherboards. The FC PBGA substrate has a CTE of approximately 12 to 14 ppm/°C. It also relies on underfill to provide adequate die-to-package interconnect reliability, but since the FC PBGA substrate is not as stiff as the CBGA’s, the die can have some influence on the reliability of solder joints proximate to the die edge. The die’s influence is mitigated by the use of 1.0-mm thick substrate on all Motorola FC PBGAs and by depopulating the solder balls under the die edge on some designs such as the 503-pin package.

The Motorola XPC107 in a 503-pin FC PBGA (see Figure 9) has passed 6,000 0°C to 100°C thermal cycles with no fails. This equates to an expected 6x increase in board-level reliability relative to the same size CBGA for which data was presented in Figure 7. Because the 503-pin is a perimeter package with no solder balls under the die edge, the board-level reliability for full-array FC PBGAs such as the 255- and 360-pin packages may not exhibit the same increase, but they will still provide a significant board-level reliability improvement over CBGA. Board-level cycling on the 360-pin, 25 mm FC PBGA is currently underway with no fails out to 3,000 cycles, which represents an approximate 3x increase in life relative to the equivalent CBGA. Cycling on this 360-pin FC PBGA is being carried out using both the FC PBGA and the CBGA-sized motherboard pads with no fails on either pad size.
Board-Level Reliability

Figure 8. Motorola 503-Pin CBGA Package Drawing
Board-Level Reliability

Figure 8. **Motorola** 503-Pin CBGA Package Drawing (Continued)

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>A</td>
<td>2.70</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>1.08</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0.60</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>0.82</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.96</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>32.50 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>30.48 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>--</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>3.43</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>5.00</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>32.50 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>--</td>
<td>14.50</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>3.43</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>9.00</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

CASE NO. 11068-01
STANDARD JIEDEC MO-156 AB5
REFERENCE
TITLE 503 CBGA, 32.50 X 32.50 MM
Figure 9. Motorola 503-Pin Flip-Chip PBGA Package Drawing
Figure 9. Motorola 503-Pin Flip-Chip PBGA Package Drawing (Continued)
Freescale Semiconductor, Inc.

Board-Level Reliability
Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzogen 7
81289 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 9405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be verified for each customer application by the customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.