Recent progressive variable speed drives are designed to increase product performance and system efficiency. One such motor type which can benefit from digital control is the switched reluctance (SR) motor. The SR motor brings advantages in both cost and reliability over other types of adjustable speed drives. These include its simple mechanical construction, high efficiency and high power density. On the other hand, large torque ripple, due to double saliency construction, limits usage of the SR motor in many applications.

Another advantage of an SR motor is its high-speed operation (> 50,000 RPM). This results in a smaller motor for a given output power and reduces the size and weight of the target application. A typical application that can benefit from this feature is the vacuum cleaner. The high-speed SR motor makes the vacuum cleaner smaller and lighter, and the noise generated by torque ripple is comparable to other types of motors.

Application Requirements

- Very high speed (>50,000 RPM)
- Open loop speed control
- Maximal speed limitation
- One direction of rotation
- Fast start up time (500–1000 ms)
- Full power in 2–3 seconds
- Small DC bus capacitor (<10 μF)

Application Concept

As noted in the “Switched Reluctance Motors” article on page 17, the SR motor requires position feedback for motor phase commutation. However, implementing mechanical sensors increases costs and decreases system reliability. Therefore, manufacturers of vacuum cleaners have attempted to eliminate position sensors for control of the SR motor. A variety of algorithms for sensorless control have been developed, most of which involve flux linkage estimation. These methods calculate the actual phase flux linkage and use its relation to the reference flux linkage for position estimation. The main disadvantage for these methods is that the estimation of the flux linkage is based on a precise knowledge of the phase resistance. The phase resistance varies significantly with temperature, which yields unwanted integration errors, especially at low speed. These integration errors create a significant position estimation error.

Another method for sensorless position estimation presented in this article is based on phase current peak detection. This control method allows SR motor operation at a very high speed, making this method useful for the vacuum cleaner application.

The principle of this method can be seen in figure 1. The phase starts to be excited at the moment corresponding to the desired current amplitude. The current begins to rise until the position where the stator and rotor poles begin to overlap. At this moment, the phase current reaches its maximum. In other words, the current peak determines the exact position of the rotor. Knowing the time of two consecutive current peaks, the commutation period and corresponding on/off times can be calculated. The current peak can be detected by external circuitry or by using a powerful DSC for direct software evaluation.
The advantage of this method is that it is independent of the motor parameters. All we need to know is the rotor position at the current peak. Another advantage is that the current peak detection algorithm is very simple compared to the estimation of the flux linkage method. Thus, this method can be used at very high speeds, whereas the low number of current samples for flux calculation limits the precision of the flux linkage estimation method.

Though the control technique is simple, it requires a powerful MCU if fully implemented digitally without any external components. This MCU has to be capable of very fast phase current sampling and current peak evaluation. For example, in a two-phase SR motor running at 60,000 RPM, the commutation period is only 250 μs. To gain sufficient precision in current peak detection, the phase current has to be evaluated at least every 5 μs.

Implementation

The MC56F8013 DSC is a good choice for this application. This device is a member of the MC56F80xx family, which is well suited for digital motor control, combining the DSP's calculation capability with the MCU's controller features on a single chip. These hybrid controllers offer many dedicated peripherals, such as pulse width modulation (PWM) modules, fast analog-to-digital converters (ADC), timers, communication peripherals (SCI, SPI, FC) and on-chip flash and RAM. The example of digital implementation of a current peak algorithm using the MC56F8013 DSC can be seen in figure 2. The example meets all requirements for vacuum cleaner application discussed above. Figure 2 illustrates the system concept, which incorporates a two-phase SR high voltage power stage, a two-phase SR motor and an MC56F8013 controller board, which executes the control algorithm. In response to the user interface and feedback signals, the system generates PWM signals for the two-phase SR high voltage power stage. High voltage waveforms generated by the DC-to-AC inverter are applied to the motor.

The state of the user interface is scanned periodically, while the DC bus voltage and the excited phase current are sampled. The SR motor starts on command from the start/stop switch. At first, the rotor is aligned to a known position. As soon as the rotor is stabilized, the startup algorithm begins to excite the phases to get the SR motor running. During startup, the rotor position is evaluated by an algorithm. Once the SR motor achieves a stable speed, the rotor position is evaluated from the peak current. After the startup sequence, the SR motor speed is increased to maximum by a speed ramp.

The phase current is sampled every 4.4 μs. The number of ADC samples taken during a PWM period is calculated at the beginning of every PWM cycle, according to the actual duty cycle. The current samples are evaluated by the peak detection algorithm. Once the peak has been detected, the actual commutation period and on/off times are calculated from the latest and previous peak times.

The application software is written in C language except for the current sensing, current peak evaluation and commutation event interrupt routines, since they are time critical. These routines are written in assembler.

Freescale Enablement

A full description of this application, including software and hardware resources, can be found in reference design DRM100 at freescale.com.
How to Reach Us:

Home Page: freescale.com

Motor Control
Portfolio Information: freescale.com/motorcontrol

e-mail: support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Munich, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright license granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.