Implementing PFC Average Current Mode Control using the MC9S12E128

Addendum to Reference Design Manual DRM064

by: Pavel Grasblum
Freescale Semiconductor, Roznov CSC, Czech Republic

This application note is intended as an addendum to the Design Reference Manual DRM064 ([1]) and describes implementation of an average current mode control of Power Factor Correction (PFC) on MC9S12E128. The DRM064 deals with the design of a Single Phase On-Line UPS using an MC9S12E128. It includes control of a power factor correction (PFC), a DC/DC step up converter, a battery charger, and an output inverter.

The current UPS Reference Design (described in [1]) utilises so-called indirect PFC control. Indirect PFC means that the voltage (outer) control loop is performed digitally by the microcontroller. The output of the voltage control loop is converted by a D/A converter to an analogue signal, which acts as a current reference to the current (inner) control loop. The inner loop is executed by external hardware, which is implemented as an hysteretic controller working in continuous conduction mode (CCM).

The use of the indirect control approach reduces instruction loading of the MCU, since the current control loop requires high bandwidth. On the other hand, this approach needs additional hardware and does not take...
complete advantage of digital control, such as higher noise immunity, greater flexibility, fewer components, and so on.

This application note discusses a fully digital control technique; namely, an average current mode. The PFC running in average current mode utilises continuous conduction mode, so this control approach is suitable for medium and higher power applications.

1 Average Mode Control Theory

The control structure is similar to the indirect control, and is divided into two: an inner and outer control loop as shown in Figure 1. The outer voltage control loop is identical to the original. It keeps a constant voltage on the DC bus. The voltage control loop utilises a PI controller and the output defines amplitude required for the PFC current.

![Figure 1. Average Mode Control Block Diagram](image)

The inner current loop has a different structure to the original one used. First, the control loop is implemented via software in the microcontroller, which directly controls the PFC transistor. Second, the control loop employs the PI controller to maintain the sinusoidal input current. The inputs to the PI controller are Ierr, as the difference between the current reference, Iref, and the actual current Iin. The sinusoidal waveform of Iref can be derived from the shape of the input voltage V_{in,DC}, or as shown in...
Implementing PFC Average Current Mode Control using the MC9S12E128, Rev. 0

2 Hardware Implementation

The PFC circuit uses the same components (inductor, capacitor, transistor, current sensor, etc.) as in the original design described in [1]. The design changes lie in the control and sensing signals only. The PFC transistor is directly connected to the PMF module, channel 0. The inductor current is sensed by the A/D converter, channel 6. The input voltage (AN11), top (AN7) and bottom (AN8) voltages are unchanged. The overview of all the control signals used in the average current mode PFC control is depicted in Figure 1.

3 Software Implementation

As with the hardware, small changes were made to implement the average current mode control in software. The voltage control loop remains unchanged, and is still running in the 1 ms interrupt. The current loop was integrated into the fastest (50 μs) interrupt as shown in Figure 2. The current controller utilises a recursive algorithm for fast execution time.

Next, the conversion of analogue values were rearranged. The input current was routed to channel six since the A/D converter doesn’t allow a change in the order of samples. Now the fast conversion converts the output current, output voltage and input current in one sequence. The overview of all sensed quantities can be seen in Table 1. The difference between the fast and slow conversion is explained in [1].

The output of the current controller is summed by the feedforward block. The feedforward block performs calculations according to Equation 1. Since the hardware design allows measuring the average value of the input voltage only, the waveform of $V_{\text{in, DC}}$ is generated using the sinewave generator. The result of the summation defines the duty cycle of the PFC transistor.

Figure 1, generated digitally by a sinewave generator synchronised with the main input voltage V_{in}. The final current reference, I_{ref}, is acquired by multiplying a unitary sine waveform by the output of the voltage controller. The current PI controller’s output is summed by the feedforward block, which compensates for variation in the input voltage. The feedforward block generates a signal, D', corresponding to the duty cycle of a boost converter in an open loop, expressed as

$$D' = \frac{V_{\text{DCB}} - V_{\text{IN, DC}}}{V_{\text{DCB}}}$$

Eqn. 1

where:

- V_{DCB} = DC bus voltage
- $V_{\text{IN, DC}}$ = rectified input voltage
- D' = duty cycle of PWM transistor

The resultant signal D defines the duty cycle of the PFC transistor. The bandwidth of the current PI controller has to be set above 8 kHz to get a sufficient response. Therefore the current PI controller algorithm has to be executed at least once every 60 μs, which puts a lower-limit requirement on the performance of the microcontroller. The MCU performance requirement for the voltage control loop remains unchanged. And since the bandwidth of the voltage control loop is set below 20 Hz, the MCU performance is not a limiting factor in this part of the PFC algorithm.
The switching frequency of the PFC transistor is set to 40 kHz in order to be a multiple of the current loop execution frequency (20 kHz). This constant switching frequency of the PFC transistor simplifies the design of the input filter.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Type of Conversion</th>
<th>Conversion Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OUT}</td>
<td>fast</td>
<td>50 µs</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>fast</td>
<td>50 µs</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>fast</td>
<td>50 µs</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>slow</td>
<td>300 µs</td>
</tr>
<tr>
<td>V_{DCB, TOP}</td>
<td>slow</td>
<td>100 µs</td>
</tr>
<tr>
<td>V_{DCB, BOT}</td>
<td>slow</td>
<td>100 µs</td>
</tr>
<tr>
<td>I_{BAT}</td>
<td>slow</td>
<td>300 µs</td>
</tr>
<tr>
<td>V_{BAT}</td>
<td>slow</td>
<td>300 µs</td>
</tr>
<tr>
<td>Temp</td>
<td>slow</td>
<td>300 µs</td>
</tr>
</tbody>
</table>

Table 1. Overview of Sensed Quantities
3.1 **MCU Loading and Interrupt Execution Time**

The execution time of periodic interrupts were measured by oscilloscope. The results can be seen in Figure 3. The blue colour represents a PMF reload interrupt, cyan is an ATD complete interrupt, violet shows a 1 ms interrupt and the green colour is a 50 ms interrupt. The total estimated MCU load is 77.5%. The execution time of each interrupt can be seen in Table 2, and the code size in Table 3. As shown in Table 2, the implementation of average current mode control requires 12.3% more MCU execution time over the indirect approach.

![Figure 2. New Structure of ATD Conversion Complete Interrupt](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Execution Period</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF Reload Interrupt</td>
<td>50 µs</td>
<td>15.8 µs</td>
</tr>
<tr>
<td>ATD Conversion Complete Interrupt</td>
<td>50 µs</td>
<td>19.4 µs</td>
</tr>
<tr>
<td>TIM0 CH4 Input Capture Interrupt</td>
<td>8.3 ms or 10 ms</td>
<td>7.8 µs</td>
</tr>
<tr>
<td>TIM0 CH5 Output Compare Interrupt</td>
<td>1 ms</td>
<td>69 µs</td>
</tr>
<tr>
<td>TIM0 CH6 Output Compare Interrupt</td>
<td>50 ms</td>
<td>43.4 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Size in Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH</td>
<td>11380</td>
</tr>
<tr>
<td>RAM</td>
<td>2547</td>
</tr>
<tr>
<td>Stack</td>
<td>512</td>
</tr>
</tbody>
</table>

Table 2. Execution Time Of Periodic Interrupts

Table 3. Size of UPS Application Code

Implementing PFC Average Current Mode Control using the MC9S12E128, Rev. 0
4 Conclusion

The average current mode control of the power factor correction has been tested in the UPS reference design described in [1]. The results can be seen in Figure 4 and Figure 5. Figure 4 shows the input current at the full UPS load. Figure 5 depicts the response of the PFC controller on a load step.
5 References

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 5220080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCEForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Bluetooth trademarks are owned by their proprietor and used by Freescale Semiconductor, Inc. under license.

© Freescale Semiconductor, Inc. 2005. All rights reserved.