Motorola’s e500
Integrated Host Processor

Dan Bouvier
Motorola Semiconductor Products Sector
Somerset Architecture Manager
MPC85xx Family Design Goals

• Integration of RapidIO with a high performance, low power, 1 GHz e500 processor
• Address the processing needs for:
 – Network control plane workloads such as route exception processing and high touch services
 – Enterprise Storage Channel Processing
 – High Density Distributed Computing Platforms
• Optimize an SoC platform for performance and flexibility
 – Focus on MIPs / Watt / Packet / $
 – Balance processor performance with I/O system throughput
 – Include necessary integration to enable multiple applications
 – Define a flexible architecture for easy integration of value added IP
 • Conform to Motorola’s Semiconductor Reuse Standards SRS 3.0
• Provide a platform for a family of Motorola ASSPs for Communications, Automotive, and Consumer applications
Motorola’s MPC8540

Features

- e500 “Book E” Processor 600Mhz - 1GHz
- 256k On-chip L2
- High Performance On Chip Fabric
- DDR Memory Controller
- Advanced I/O ports
 - RapidIO
 - PCI-X
 - 10/100/Gbit Ethernet
 - General Purpose ChipSelect Machine
- 4-Channel DMA
- Interrupt Controller
- DUART Serial Interface
e500 Core Features

- 600MHz - 1GHz “Book E” Microprocessor
- 2-way Superscalar
- Out-of-Order Issue and Execution with multiple execution units
- Support for Auxiliary Processor Units (APU)s
 - Context Management APU
 - isel APU
 - Signal Processing APU
- Book E MMU
 - Variable page sizes (4KB to 256MB)
 - Big/Little-Endian Support by page
- 32KB L1 I-Cache and D-Cache
 - Line by Line Locking
 - MESI cache coherency
e500 APUs

- **Context Management APU**
 - Fast and Deterministic Context switching for lower interrupt latency
 - Registers for two contexts

- **isel APU**
 - Conditional MOVE Operation
 - Improves performance of code through simple predication to remove branches
 - *isel* instruction: \(\text{rd} = \text{crN} \ ? \text{rs1:rs2} \);

- **Signal Processing APU**
 - Aimed at convergent Integer and DSP applications
 - SIMD unit with 222 new instructions
 - 64-bit GPRs overlaid on existing GPRs
 - Accumulator for single-cycle MAC
Core Complex

- Core Complex Bus (CCB)
 - SMP - MESI protocol, 32-bit address, Three 128b data busses
 - Split, out-of-order and multiple outstanding transactions
- Coherency Module
 - Manages 3 Concurrent Coherent Addresses
 - Entry point for non-coherent traffic
 - Speculative Fetches
- L2 Cache
 - 256kB 8-way set associative
 - Line by Line Locking
 - Memory-Mappable in 128k granules (externally writeable)
 - Allocate and Lock on DMA
- Memory Controller
 - 64-bit, 333MHz DDR SDRAM
 - 16 Outstanding Transactions
 - 4 - chip selects each supporting up to 1 Gbyte
OCeaN (On Chip Network)

- Required an on-chip connection medium for multiple processors and peripherals
- On-chip peripheral busses don’t scale well!
 - Needed scalability in numbers of ports and frequency
 - While maintaining chip route-ability
 - Needed a high level of transaction concurrency
- OCeaN (On Chip Network)
 - Scalable Non-Blocking Switch Fabric
 - Leverages RapidIO concepts
 - Full Duplex port connections 128Gb/s concurrent throughput
 - Independent Per Port Transaction Queuing and Flow Control
 - Latch to Latch protocol
High Performance Data Flow

- **Address Translation and Mapping Unit (ATMU)**
 - Flexible Address Mapping through Inbound and Outbound Windows
 - Port to port transaction routing
 - Provides all transaction attributes

- **High Performance DMA Engine**
 - 4 Channels - with Independent control
 - OCeaN allows concurrent load and store any port to any port
 - Bandwidth Allocation
 - 2-Level Descriptor Chain
 - Scatter Gather, Stride, Source/Destination Hold
 - Data Payloads up to 256 Bytes
RapidIO

- Control Interconnect for High Performance Embedded Systems
- Open Standard backed by 46 companies
 led by: Alcatel, Cisco, EMC, Ericsson, IBM,
 Mercury Computer, Motorola, and Nortel
- Source addressed true switched control interconnect
 - Supports rich topologies and high level of concurrency
 - Scalable to 64k devices
- Highly Reliable
 - Automatic hardware error detection and recovery
- Software Transparent
- PCI bridge capable
- Parallel and soon to be released Serial Physical Layers
RapidIO on MPC8540

- Rev 1.1 Compliant 500MHz - 16 Gb/s Bandwidth
- Interface Point for Network Processors, ASICs, FPGAs, Protocol Chips, Accelerators
- 8 to 256 Byte packet data payloads with 4 Transaction Priorities
- Source Addressing for up to 256 Devices in arbitrary topologies
- Support for I/O system and Message Passing
 - up to 4 KByte Messages

Microprocessor Forum 2001
Ethernet Controllers

• Two High Performance 10/100/1G Controllers
 – IEEE 802.3, 802.3u, 820.3x, 802.3z, 802.3ac compliant
 – Consistent with Proven Programming Model (PowerQUICC)
 – Layer 2 Acceleration
 • 8 UniCast Address Matches
 • 512 entry hash for Broadcast and Multicast
 • Direct Queuing of 8 flows
 – Packet Field Extraction and Insertion
 – 9.6KB Jumbo Frame support
 – GMII and TBI SERDES interface
 – RMON statistics support
 – 2KB internal transmit and receive FIFOs

• One Maintenance 10/100 Controller
 – For console, debug, and maintenance interface
MPC8540 Peripheral Interfaces

- **PCI-X Controller**
 - 64b, 133MHz
 - 64b Dual Address Cycle Support
 - Host and Agent Modes
 - PCI to RapidIO Bridge Support

- **General Purpose Chip-select Machine (GPCM)**
 - GPIO Port with 4 Chip Selects
 - Connect Flash, DSP Host Ports, FPGAs

- **EPIC Interrupt Controller**
 - 8 discrete or 16 serial IRQs
 - IPI Interface for up to 4 CPUs
 - Four - 32b Message Registers
 - Four cascade-able Timers
 - Selectable CPU notification using standard or critical interrupt
Error Management and Debug

• Embedded Infrastructure Requires Robust Error Coverage
 – CPU Watchdog
 – L1 Caches - Parity, L2 Cache - ECC, Memory - ECC
 – RapidIO - transmission error detection and recovery, watchdog timers, diagnostic error injection logic
 – PCI, GPCM - parity
 – All Interfaces include a variety of error recording registers

• Debug Facilities
 – “Book E” enhanced processor debug facilities
 – IEEE 1149.1 complaint, JTAG boundary scan
 – 2 COPs (1 on core complex and 1 for system logic)
 – System Access Port - JTAG runtime access to system memory map
 – Memory interface attribute output pins
 – System logic watchdog monitors with Input and output trigger pins
MPC8540 Applications

- Route Exception Processor
 - RapidIO for High Speed connection to forwarding plane
 - Gig-Ethernet for backplane control Communications (ex. SNMP)
 - PCI-X for legacy subsystem peripherals
Statistics

<table>
<thead>
<tr>
<th>Architecture</th>
<th>PowerPC™ Book E Compatible</th>
</tr>
</thead>
</table>
| Performance (est.) (Dhrystone 2.1) | 2315 MIPS @ 1 GHz
 | 1385 MIPS @ 600MHz |
| Caches | L1:32KB I and D, L2: 256KB, 8-way |
| Power (est.) | 6.5 W |
| Technology | 0.13um Copper technology |
| Power Supply | 1.5V |
| Package | 575 pin PBGA |
Summary

• Motorola’s next generation e500 integrated processor provides a high performance control solution on an SoC platform optimized for MIPs / Watt / Packet / $

• Provide a platform for a family of Motorola ASSPs for Communications, Automotive, and Consumer applications

Thank you!