Product Preview

PowerPC™ Microcontroller

Features

• PowerPC™ Core with Floating-Point Unit
• 26 Kbytes Fast RAM and 6 Kbytes TPU Microcode RAM
• 448 Kbytes Flash EEPROM with 5V Programming
• 5V I/O System
• Serial System: Queued Serial Multi-Channel Module (QSMCM), Dual CAN 2.0B Controller Modules (TouCAN™)
• 50-Channel Timer System: Dual Time Processor Units (TPU3), Modular I/O System (MIOS1)
• 32 Analog Inputs: Dual Queued Analog-to-Digital Converters (QADC64)
• Submicron HCMOS (CDR1) Technology
• 272-Pin Plastic Ball Grid Array (PBGA) Packaging
• 40-MHz operation, -40° C to 125° C with Dual Supply (3.3V, 5V)
RISC MCU Central Processing Unit (RCPU)
- 32-Bit PowerPC™ Architecture (compliant with PowerPC™ Architecture Book 1)
- Core performance measured at 52.7K Dhrystones (v2.1) @ 40 MHz
- Fully static, low power operation
- Integrated double-precision floating-point unit
- Precise exception model
- Extensive system development support
 - On-chip watchpoints and breakpoints
 - Program flow tracking
 - BDM on-chip emulation development interface

Four-Bank Memory Controller
- Works with SRAM, EPROM, flash EEPROM, and other peripherals
- Byte write enables
- 32-bit address decodes with bit masks

U-Bus System Interface Unit (USIU)
- Clock synthesizer
- Power management
- Reset controller
- PowerPC™ decrementer and time base
- Real-time clock register
- Periodic interrupt timer
- Hardware bus monitor and software watchdog timer
- Interrupt controller that supports up to eight external and eight internal interrupts
- IEEE 1149.1 JTAG test access port
- External bus interface
 - 24 address pins, 32 data pins
 - Supports multiple master designs
 - Four-beat transfer bursts, two-clock minimum bus transactions
 - Supports 5V inputs, provides 3.3V outputs

Flexible Memory Protection Unit
- Four instruction regions and four data regions
- 4-Kbyte to 16-Mbyte region size support
- Default attributes available in one global entry
- Attribute support for speculative accesses

448-Kbyte Flash EEPROM Memory
- One 256-Kbyte and one 192-Kbyte module
- Page read mode
- Block (32-Kbyte) erasable
- External 4.75V to 5.25V program and erase power supply

26-Kbytes of Static RAM
- One 16-Kbyte and one 10-Kbyte module
- Fast (one-clock) access
- Keep-alive power
- Soft defect detection (SDD)

General-Purpose I/O Support
- Address (24) and data (32) pins can be used for general-purpose I/O in single-chip mode
- 9 general-purpose I/O pins in MIOS1 unit
- Many peripheral pins can be used for general-purpose I/O when not used for primary function
- 5V tolerant inputs/outputs
Two Time Processor Units (TPU3)

• Each TPU3 module provides these features:
 — A dedicated micro-engine operates independently of the RCPU
 — 16 independent programmable channels and pins
 — Each channel has an event register consisting of a 16-bit capture register, a 16-bit compare register and a 16-bit comparator
 — Nine pre-programmed timer functions are available
 — Any channel can perform any time function
 — Each timer function can be assigned to more than one channel
 — Two timer count registers with programmable prescalers
 — Each channel can be synchronized to one or both counters
 — Selectable channel priority levels
 — 5V tolerant inputs/outputs
• 6-Byte dual port TPU RAM (DPRAM) is shared by the two TPU3 modules for TPU microcode

18-Channel Modular I/O System (MIOS1)

• Ten double action submodules (DASM)
• Eight dedicated PWM sub-modules (PWMSM)
• Two 16-bit modulus counter submodules (MCSM)
• Two parallel port I/O submodules (PIOSM)
• 5V tolerant inputs/outputs

Two Queued Analog-to-Digital Converter 2 Modules (QADC64)

Each QADC provides:
• Up to 16 analog input channels, using internal multiplexing
• Up to 41 total input channels, using internal and external multiplexing
• 10-bit A/D converter with internal sample/hold
• Typical conversion time of 10 µsec (100,000 samples per second)
• Two conversion command queues of variable length
• Automated queue modes initiated by:
 — External edge trigger/level gate
 — Software command
• 64 result registers
• Output data that is right- or left-justified, signed or unsigned
• 5V reference and range

Two CAN 2.0B Controller Modules (TouCAN™)

Each TouCAN™ provides these features:
• Full implementation of CAN protocol specification, version 2.0A and 2.0B
• Each module has 16 receive/transmit message buffers of 0 to 8 bytes data length
• Global mask register for message buffers 0 to 13
• Independent mask registers for message buffers 14 and 15
• Programmable transmit-first scheme: lowest ID or lowest buffer number
• 16-bit free-running timer for message time-stamping
• Low power sleep mode with programmable wake-up on bus activity
• Programmable I/O modes
• Maskable interrupts
• Independent of the transmission medium (external transceiver is assumed)
• Open network architecture
• Multimaster concept
• High immunity to EMI
• Short latency time for high-priority messages
• Low power sleep mode with programmable wakeup on bus activity
Queued Serial Multi-Channel Module (QSMCM)

- Queued serial peripheral interface (QSPI)
 - Provides full-duplex communication port for peripheral expansion or interprocessor communication
 - Up to 32 preprogrammed transfers, reducing overhead
 - 160-byte queue buffer
 - Programmable transfer length: from 8 to 16 bits, inclusive
 - Synchronous interface with baud rate of up to system clock divided by 4
 - Four programmable peripheral-select pins support up to 16 devices
 - Wrap-around mode allows continuous sampling for efficient interfacing to serial peripherals (e.g., serial A/D converters, I/O latches, etc.)

- Two serial communications interfaces (SCI). Each SCI offers these features:
 - UART mode provides NRZ format and half- or full-duplex interface
 - 16 register receive buffer and 16 register transmit buffer (SCI1 only)
 - Advanced error detection and optional parity generation and detection
 - Word length programmable as 8 or 9 bits
 - Separate transmitter and receiver enable pins and double buffering of data
 - Wakeup functions allow the CPU to run uninterrupted until either a true idle line is detected or a new address byte is received
 - External source clock for baud generation
 - Multiplexing of transmit data pins with discrete outputs and receive data pins with discrete inputs, allowing realization of a low-speed serial protocol