Setting up the MMA7660FC to do Orientation Detection

by: Laura Salhuana

ACRONYMS

ODR: Output Data Rate
AMSR: Auto Sleep Sample Rate
FILT: Debounce filter bits of orientation detection debounce filter
PLINT: Portrait/Landscape Interrupt
FBINT: Front/Back Interrupt
INT: Interrupt
TILT: Tilt (0x03) Register
INTSU: Interrupt Setup (0x06) Register
SR: Sample Rate (0x08) Register

ABSTRACT

The MMA7660FC has the built in capability to do orientation detection. This feature gives the customer the capability to do applications such as portrait/landscape in mobile phones/PMP/PDAs. The tilt orientation of the device is in 3 dimensions and is identified in its last known static position. This allows a product to set its display orientation appropriately to either portrait or landscape mode or to turn off the display when the device is placed upside down. The sensor provides 6 different positions: left, right, up, down, back, and front, defined in Table 1 and Figure 1. This application note will explain how to configure the MMA7660FC to do orientation detection given the desired sample rate or targeted power consumption.

Table 1. Orientation Detection Logic of when Interrupt will Occur

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Xg</th>
<th>Yg</th>
<th>Zg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>$</td>
<td>Z</td>
<td>< 0.8g$ and $</td>
</tr>
<tr>
<td>Down</td>
<td>$</td>
<td>Z</td>
<td>< 0.8g$ and $</td>
</tr>
<tr>
<td>Right</td>
<td>$</td>
<td>Z</td>
<td>< 0.8g$ and $</td>
</tr>
<tr>
<td>Left</td>
<td>$</td>
<td>Z</td>
<td>< 0.8g$ and $</td>
</tr>
<tr>
<td>Back</td>
<td>$Z < -0.25g$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>$Z > 0.25g$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Flow Chart of Orientation Detection Setup and Algorithm
SAMPLE RATE

The sampling rate can be selected based on the targeted power consumption per the application specification or the desired response rate of the orientation detection. When deciding on the response rate, keep in mind that the faster the sampling rate, the faster the interrupt will occur. The trade-off is that the higher the sampling rate, the higher the power consumption is. The following are the sample rates available in the MMA7660FC sensor with the corresponding approximate power consumption rates.

NOTE: These current drain rates were tested in the factory and could vary given PCB board design.

Table 2. Sample Rate vs. Current Consumption

<table>
<thead>
<tr>
<th>Sampling Rate</th>
<th>Current Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand By</td>
<td>2.33 µA</td>
</tr>
<tr>
<td>1 SPS</td>
<td>46.9 µA</td>
</tr>
<tr>
<td>2 SPS</td>
<td>49.3 µA</td>
</tr>
<tr>
<td>4 SPS</td>
<td>54 µA</td>
</tr>
<tr>
<td>8 SPS</td>
<td>65.8 µA</td>
</tr>
<tr>
<td>16 SPS</td>
<td>89.2 µA</td>
</tr>
<tr>
<td>32 SPS</td>
<td>133 µA</td>
</tr>
<tr>
<td>64 SPS</td>
<td>221 µA</td>
</tr>
<tr>
<td>120 SPS</td>
<td>294 µA</td>
</tr>
</tbody>
</table>

REGISTER OVERVIEW FOR ORIENTATION DETECTION

The following are the registers that will be used and/or configured for orientation detection.

$03: Tilt Status (Read only)

TILT

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$06: Interrupt Setup Register

INTSU - Read/Write

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>PLINT</td>
<td>FBINT</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$08: Auto-Wake and Active Mode Portrait/Landscape Output data rates register (Read/Write)

SR – Sample Rate Register

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Setting up the INTSU [0x06] Register for Orientation Detection Only

Based on the application specification of the MMA7660FC, the sensor can be configured to report back/front interrupts and/or up/down/left/right interrupts. If the application targets to use back and front the FBINT bit must be set to 1. If the back and front interrupt is not desired then set the FBINT bit to 0. If the application targets Up/Down/Left/Right interrupts then the PLINT bit must be set to 1. If the Up/Down/Left/Right interrupt is not desired then set the PLINT bit should be set to 0.

INTSU- Read/Write

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>PLINT</td>
<td>FBINT</td>
</tr>
</tbody>
</table>

FBINT
0: Front/Back position change does not cause an interrupt
1: Front/Back position change causes an interrupt

PLINT
0: Up/Down/Right/Left position change does not cause an interrupt
1: Up/Down/Right/Left position change causes an interrupt

NOTE: For further description of the INTSU (0x06) register, please refer to the MMA7660FC Data Sheet.

Setting up the SR (0x08) register for orientation detection only:

The sample rate must be selected based on target power consumption levels and/or desired response rate for the orientation detection application. To set up the sample rate, the AMSR[3:0] must be configured. Given the selected sample rate a debounce filter setting (FILT[3:0]) must be selected also. Application testing has been done to correlate the sample rate and the recommended debounce filter setting. Refer to Table 3.

SR – Read/Write

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AMSR[2:0]</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 AMPD 120 Samples/Second Active and Auto-Sleep Mode
<i>For portrait/landscape detection: </i>The device takes and averages 32 g-cell measurements every 8.36 ms in Active Mode and Auto-Sleep. The update rate is 120 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001 AM64 64 Samples/Second Active and Auto-Sleep Mode
<i>For portrait/landscape detection: </i>The device takes and averages 32 g-cell measurements every 15.625 ms in Active Mode and Auto-Sleep. The update rate is 64 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 AM32 32 Samples/Second Active and Auto-Sleep Mode
<i>For portrait/landscape detection: </i>The device takes and averages 32 g-cell measurements every 31.25 ms in Active Mode and Auto-Sleep. The update rate is 32 samples per second. These measurements update XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011 AM16 16 Samples/Second Active and Auto-Sleep Mode
<i>For portrait/landscape detection: </i>The device takes and averages 32 g-cell measurements every 62.5 ms in Active Mode and Auto-Sleep. The update rate is 16 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
100 AM8 8 Samples/Second Active and Auto-Sleep Mode

For portrait/landscape detection: The device takes and averages 32 g-cell measurements every 125ms in Active Mode and Auto-Sleep. The update rate is 8 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.

101 AM4 4 Samples/Second Active and Auto-Sleep Mode

For portrait/landscape detection: The device takes and averages 32 g-cell measurements every 250ms in Active Mode and Auto-Sleep. The update rate is 4 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.

110 AM2 2 Samples/Second Active and Auto-Sleep Mode

For portrait/landscape detection: The device takes and averages 32 g-cell measurements every 500ms in Active Mode and Auto-Sleep. The update rate is 2 samples per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.

111 AM1 1 Sample/Second Active and Auto-Sleep Mode

For portrait/landscape detection: The device takes and averages 32 g-cell measurements every 1000ms in Active Mode and Auto-Sleep. The update rate is 1 sample per second. These measurements update the XOUT (0x00), YOUT (0x01), and ZOUT (0x02) registers also.

<table>
<thead>
<tr>
<th>Filt[2:0]</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Tilt debounce filtering is disabled. The device updates portrait/landscape every reading at the rate set by AMSR[2:0] or AWSR[1:0]</td>
</tr>
<tr>
<td>001</td>
<td>2 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>010</td>
<td>3 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>011</td>
<td>4 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>100</td>
<td>5 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>101</td>
<td>6 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>110</td>
<td>7 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
<tr>
<td>111</td>
<td>8 measurement samples at the rate set by AMSR[2:0] or AWSR[1:0] have to match before the device updates portrait/landscape data in TILT (0x03) register.</td>
</tr>
</tbody>
</table>

Table 3. Sample Rate vs. Debounce Filter Table

<table>
<thead>
<tr>
<th>Sample Rate</th>
<th>Debounce Filter Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SPS</td>
<td>4</td>
</tr>
<tr>
<td>2 SPS</td>
<td>6</td>
</tr>
<tr>
<td>4 SPS</td>
<td>8</td>
</tr>
<tr>
<td>8 SPS</td>
<td>8</td>
</tr>
<tr>
<td>16 SPS</td>
<td>8</td>
</tr>
<tr>
<td>32 SPS</td>
<td>8</td>
</tr>
<tr>
<td>64 SPS</td>
<td>External Debounce Filter</td>
</tr>
<tr>
<td>120 SPS</td>
<td>External Debounce Filter</td>
</tr>
</tbody>
</table>

NOTE: The recommended values were tested on the RD3803MMA7660FC evaluation board. The values may change given the mounting and position of the sensor on the PCB design.
External Debounce Filter:

When using the MMA7660FC and sample rates higher than 32 SPS an external debounce filter must be added to avoid flickering between positions due to involuntary human movement. The external debounce filter must be added to the application microcontroller. Below is a flow chart and Pseudocode for the debounce filter.

Figure 2. External Debounce Filter

```
//Configure Orientation Detection Interrupts
FILTER_SETTING = n
If(TILT_Interrupt occurs)
   read TILT Register
   if(old_TILT == current_TILT)
      Debounce Count++
   If(Debounce Count == FILTER_SETTING)
      //orientation = current_TILT
```

PSEUDOCODE:

1. Start
2. old_Tilt = 0
3. Debounce Count = 0
4. Filter Setting = n
5. Orientation Interrupt?
6. Current_TILT = TILT Register(0x03) BaFr and/or PoLa bits
7. Yes
 - Debounce Count++
8. No
9. Current_TILT == old_TILT?
10. Yes
 - Debounce Count == Filter Setting?
 11. Yes
 - Update Orientation Position
 12. No
 - Current_TILT == old_TILT?
 13. Yes
 - Debounce Count++
 14. No
 - Current_TILT == old_TILT?
 15. Yes
 - Orientation Interrupt?
 16. Yes
 - Update Orientation Position
 17. No
 - Current_TILT == old_TILT?
 18. Yes
 - Debounce Count++
 19. No
```
HANDLING THE ORIENTATION DETECTION INTERRUPT

When an interrupt occurs, the application must respond and read the TILT (0x03) register. When reading the TILT register the bits of interest are the following POLA[4:2] and BAFRO[1:0]. The interrupt will be cleared when the TILT register is read.

**NOTE:** If the register is read and the Alert bit is high, the register must be read again.

### TILT – Read Only

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

#### BAFro[1:0]
- 00: Unknown condition of front or back
- 01: Front: Equipment is lying on its front
- 10: Back: Equipment is lying on its back

#### PoLa[2:0]
- 000: Unknown initial condition of up or down or left or right
- 001: Left: Equipment is in landscape mode to the left
- 010: Right: Equipment is in landscape mode to the right
- 101: Down: Equipment standing vertically in inverted orientation (any markings are the wrong way up)
- 110: Up: Equipment standing vertically in normal orientation (any markings are the right way up)

#### Alert
- 0: Register data is valid
- 1: The register was read at the same time as MMA7660FC was attempting to update the contents. Re-read the register.
How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-5-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.