Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© 2007-2009, 2015 Freescale Semiconductor, Inc. All rights reserved.

MPXH6400A, 20 to 400 kPa, Absolute, Integrated Pressure Sensor

Freescale’s MPXxx6400A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make this pressure sensor a logical and economical choice for the system designer.

The MPXxx6400A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Features
- Improved accuracy at high temperature
- Available in super small outline package
- 1.5% maximum error over 0 °C to 85 °C
- Fully calibrated and compensated
- Ideally suited for microprocessor or microcontroller-based systems
- Temperature compensated from -40 °C to +125 °C
- Durable thermoplastic surface mount package
- Package porting and mounting options enable tube attachment for liquefied natural gas (LPG) or remote sensing applications

Typical applications
- Fuel injected car engines
- Vehicles powered by green gases (for example LPG and CNG)
- Small engines
- Industrial controls

Ordering information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Shipping</th>
<th>Package</th>
<th># of Ports</th>
<th>Pressure type</th>
<th>Device marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>Single</td>
</tr>
<tr>
<td>Super Small Outline Package (Media resistant gel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPXH6400AC6U</td>
<td>Rail</td>
<td>98ARH99089A</td>
<td>•</td>
<td>•</td>
<td>MPXH6400A</td>
</tr>
<tr>
<td>MPXH6400AC6T1</td>
<td>Tape and Reel</td>
<td>98ARH99089A</td>
<td>•</td>
<td>•</td>
<td>MPXH6400A</td>
</tr>
<tr>
<td>MPXHZ6400AC6T1</td>
<td>Tape and Reel</td>
<td>98ARH99066A</td>
<td>•</td>
<td>•</td>
<td>MPXHZ6400A</td>
</tr>
<tr>
<td>MPXHZ6400AC6T1</td>
<td>Tape and Reel</td>
<td>98ARH99089A</td>
<td>•</td>
<td>•</td>
<td>MPXHZ6400A</td>
</tr>
</tbody>
</table>

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
Related Documentation

The MPXxx6400A device features and operations are described in a variety of reference manuals, user guides, and application notes. To find the most-current versions of these documents:

1. Go to the Freescale homepage at:
 http://www.freescale.com/
2. In the Keyword search box at the top of the page, enter the device number MPXxx6400A.
3. In the Refine Your Result pane on the left, click on the Documentation link.

MPXH6400A
1 General Description

1.1 Block diagram

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

![Figure 1. Integrated pressure sensor block diagram](image)

1.2 Pinout

Figure 2. Device pinout (top view)

![Figure 2. Device pinout (top view)](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DNC</td>
<td>Do not connect to external circuitry or ground. Pin 1 is notated by chamfered corner.</td>
</tr>
<tr>
<td>2</td>
<td>V_S</td>
<td>Voltage supply</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>V_{OUT}</td>
<td>Output voltage</td>
</tr>
<tr>
<td>5</td>
<td>DNC</td>
<td>Do not connect to external circuitry or ground.</td>
</tr>
<tr>
<td>6</td>
<td>DNC</td>
<td>Do not connect to external circuitry or ground.</td>
</tr>
<tr>
<td>7</td>
<td>DNC</td>
<td>Do not connect to external circuitry or ground.</td>
</tr>
<tr>
<td>8</td>
<td>DNC</td>
<td>Do not connect to external circuitry or ground.</td>
</tr>
</tbody>
</table>
2 Mechanical and Electrical Specifications

2.1 Maximum ratings

Table 2. Maximum ratings

<table>
<thead>
<tr>
<th>Parametrics</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum pressure (P1 > P2)</td>
<td>P_MAX</td>
<td>1600</td>
<td>kPa</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_STG</td>
<td>-40° to +125°</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_A</td>
<td>-40° to +125°</td>
<td>°C</td>
</tr>
<tr>
<td>Output source current @ full-scale output</td>
<td>I_O+</td>
<td>0.5</td>
<td>mAdc</td>
</tr>
<tr>
<td>Output sink current @ minimum pressure offset</td>
<td>I_O-</td>
<td>-0.5</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
2. Maximum output current is controlled by effective impedance from V_OUT to GND or V_OUT to V_S in the application circuit.

2.2 Operating characteristics

Table 3. Operating characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure range</td>
<td>P_OP</td>
<td>20</td>
<td>—</td>
<td>400</td>
<td>kPa</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>4.64</td>
<td>5.0</td>
<td>5.36</td>
<td>V_DC</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_O</td>
<td>—</td>
<td>6.0</td>
<td>10</td>
<td>mAdc</td>
</tr>
<tr>
<td>Minimum pressure offset (0 to 85 °C) @ V_S = 5.0 Volts</td>
<td>V_OFF</td>
<td>0.133</td>
<td>0.2</td>
<td>0.267</td>
<td>V_DC</td>
</tr>
<tr>
<td>Full-scale output (0 to 85 °C) @ V_S = 5.0 Volts</td>
<td>V_FSO</td>
<td>4.733</td>
<td>4.8</td>
<td>4.866</td>
<td>V_DC</td>
</tr>
<tr>
<td>Full-scale span (0 to 85 °C) @ V_S = 5.0 Volts</td>
<td>V_FSS</td>
<td>4.467</td>
<td>4.6</td>
<td>4.733</td>
<td>V_DC</td>
</tr>
<tr>
<td>Accuracy (0 to 85 °C)</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>%V_FSS</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>V/P</td>
<td>—</td>
<td>12.1</td>
<td>mV/kPa</td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>t_R</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Offset stability</td>
<td>—</td>
<td>—</td>
<td>±0.25</td>
<td>%V_FSS</td>
<td></td>
</tr>
</tbody>
</table>

1. Device is ratiometric within this specified excitation range.
2. Offset (V_OFF) is defined as the output voltage at the minimum rated pressure.
3. Full-scale output (V_FSO) is defined as the output voltage at the maximum or full-rated pressure.
4. Full-scale span (V_FSS) is defined as the algebraic difference between the output voltage at full-rated pressure and the output voltage at the minimum rated pressures.
5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25 °C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25 °C.
 - TcSpan: Output deviation over the temperature range of 0 to 85 °C, relative to 25 °C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85 °C, relative to 25 °C.
 - Variation from Nominal: The variation from nominal values, for offset or full-scale span, as a percent of V_FSS, at 25 °C.
6. Response time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
7. Warm-up time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
8. Offset stability is the product’s output deviation when subjected to 1000 cycles of pulsed pressure, temperature cycling with bias test.
3 On-chip Temperature Compensation and Calibration

Figure 3 illustrates the absolute sensing chip in the basic super small outline chip carrier (case 98ARH99066A).

Figure 4 shows a typical application circuit (output source current operation).

Figure 5 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85 °C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXH6400A/MPXHZ6400A pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

![Cross-sectional diagram](image)

Figure 3. Cross-sectional diagram (not-to-scale)

![Recommended power supply decoupling and output filtering](image)

Figure 4. Recommended power supply decoupling and output filtering
Figure 5. Output vs. absolute pressure

Normal Transfer Value: \(V_{\text{OUT}} = V_S \times (0.002421 \times P - 0.00842) \pm \text{Pressure Error} \times \text{Temp. Factor} \times 0.002421 \times V_S \)

\(V_S = 5.0 \pm 0.36 \text{ VDC} \)

Figure 6. Transfer function

Figure 7. Temperature error band
Error Limits for Pressure

± 5.5 (kPa)

<table>
<thead>
<tr>
<th>Pressure (in kPa)</th>
<th>Error (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 to 400 (kPa)</td>
<td>± 5.5 (kPa)</td>
</tr>
</tbody>
</table>

Figure 8. Pressure error band

![Pressure error band diagram](image-url)
4 Package Information

4.1 Minimum recommended footprint for surface mounted applications
Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

![Figure 9. SSOP footprint](image-url)
4.2 Package Dimensions

Case 98ARH99066A, super small outline package, surface mount
Case 98ARH99066A, super small outline package, surface mount
NOTES:

1. ALL DIMENSIONS IN INCHES.

3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE 5° MAXIMUM.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.
Case 98ARH99089A, small outline package, surface mount
NOTES:

1. ALL DIMENSIONS IN INCHES.

3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE $.5 MAXIMUM.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.

Case 98ARH99089A, small outline package, surface mount
5 Revision History

Table 4. Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Revision date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5.0 | 09/2015 | • Deleted part number MPX64000AP and corresponding package.
 | | • Updated format. |
Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freedge.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.