Overview
In addition to the common credit card, magnetic strip card use has rapidly spread to student IDs, grocery store discount cards, copy machine user ID cards, vending machine debit cards, library cards, etc. The DSP56F80x family offers the processing power and peripherals for a cost-effective solution.

Key Benefits
> Combines processing power of a DSP, functionality of a microcontroller, and flexible set of peripherals on a single chip
> ADC peripherals can work with varied inputs, allowing maximum flexibility on the type of preamplifier used with system's read heads
> SCI ports connect easily to host processing system; SPI ports support stand-alone system
> CAN bus networking groups together high-volume encoder applications
> Out-of-the-box software components designed to expedite time-to-market and reduce development costs
Design Challenges
With the increasing deployment of magnetic strip cards, the demand for less expensive and more robust card encoding and issuing equipment has also grown. Multifunctional components are needed to deliver sophisticated technical solutions efficiently and at a reasonable cost.

Freescale Semiconductor Solution
The Freescale Semiconductor DSP56F805 has all the processing circuitry required to build a complete card-encoding system. As shown in the figure on page 1, the DSP56F805 offers all the elements required to build a completely capable card-encoding system with little need for additional circuitry.

A visual inspection of a credit card may leave the impression the credit card has but a single magnetic strip. In actuality, the International Organization of Standardization (ISO) dictates the locations of three strips, a standard observed by nearly every type of card. Each of these strips, or tracks, is recorded at different bit densities using the character-encoding standards shown in the following table.

Common Card Formats

<table>
<thead>
<tr>
<th>Track</th>
<th>Encoding</th>
<th>Density</th>
<th>Format</th>
<th>Characters</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IATA</td>
<td>210 BPI</td>
<td>Alpha</td>
<td>79</td>
<td>Name</td>
</tr>
<tr>
<td>2</td>
<td>ABA</td>
<td>75 BPI</td>
<td>BCD</td>
<td>40</td>
<td>Account</td>
</tr>
<tr>
<td>3</td>
<td>THRIFT</td>
<td>210 BPI</td>
<td>BCD</td>
<td>107</td>
<td>Uncommon</td>
</tr>
</tbody>
</table>

Airline customers are often greeted by name after their credit card is swiped by the ticket agent. That’s because the International Air Transport Association (IATA) standard for placing the customer’s name and account information is assigned to track one of a credit card. A quick swipe of the card and the customer’s name becomes instantly available, with no database query required.

Track two is written in the lingua franca of the credit card processing world as set forth by the American Banking Association (ABA). Nearly all credit cards and credit card equipment around the world use track two, though there is currently a movement to relocate their data to track one because it holds more information.
Track three was originally intended to support offline automated teller machine (ATM) transactions. Once deployed, ATMs were quickly networked. The need to support offline transactions quickly diminished, and with it the use of track three.

The following list explains some of the basic components of a magnetic strip encoder system and how the DSP56F805 peripherals can be efficiently applied:

> **The Read Head.** Very low-level currents in the read head coils are induced when the card’s track, containing regions of flux transition, is swiped. In order to interface effectively to the DSP56F805’s analog-to-digital converter (ADC) peripherals, some preamplifier circuitry is required. The DSP56F805’s ADCs can be configured to work with differential or single-ended inputs, so there is no practical restriction on the type of preamplifier used.

> **The Write Heads.** The DSP56F805 has two sets, six pairs total, of high-current pulse width modulation (PWM) outputs. These complementary-pair outputs are well suited to directly drive the write heads of a magnetic strip encoder.

> **The Drive System.** Most card readers use the user’s arm as the motor to drive the cards past the read heads. The data decoding is accomplished by discriminating the relative widths of pulses. The data is encoded on the card using two-frequency coherent phase encoding, also known as Aiken Biphase (see figure below).

As the figure below demonstrates, the high pulse width of a “1” is always one half that of a “0,” regardless of data density or swipe speed. (Constant data density and reasonably constant swipe speed are usually assumed to simplify processing.) A “0” can be a high or a low pulse. A card filled with all “0”s or all “1”s thus represents a decoding problem, but this extreme case never happens in the real world.

In a card writer, you’ll want to ensure data encoding is as accurate as possible. This allows slop with the less expensive, motorless (manual swipe) readers. As shown in the figure on page 1, the second PWM peripheral is used to drive the card drive wheel at a known speed. The DSP56F805 is well suited to drive all popular motor types. The quadrature decoder peripheral of the DSP56F805 can be employed if even the more accurate closed-loop speed control is desired.

In a more sophisticated but mechanically simpler version of a writer system, the encoder/motor/drive wheel combination may be replaced with an encoder/idler wheel pair. In such a configuration, the user would manually swipe the card, with the idler wheel picking up speed and location information. The encoder would then serve to generate the reference clock used to write out the data at a rate appropriate to the current swipe speed and card location.
> **The Processing System.** The DSP56F80x family has all the on-board Flash and RAM required for such an application. If an even more ambitious system dictates a larger memory footprint, the DSP56F803 and DSP56F805 provide external memory interfaces with generous addressing space. The DSP56F80x DSP core is a tremendously versatile processor with many functions experienced designers of microcontroller-based embedded systems will appreciate. The DSP portions of the core are well suited to running algorithms to drive motors and cleanse the noisy real-world signals of read heads.

> **RS-232 Communications.** All members of the DSP56F80x family have serial communications interface (SCI) ports designed for direct interfacing to an RS-232 transceiver. This port allows for easy connection to a host processing system.

> **Serial Peripheral Interface (SPI) Communications.** The DSP56F80x is effective when implemented in card encoder systems designed to be stand-alone (away from any host PC). An SPI port permits painless connection to many output enabler (original equipment manufacturer) smart keypads and LCD displays. The DSP56F805 offers a second SCI port as well.

> **Networking.** For high-volume encoder applications, grouped together by multiple high-throughput sites, controller area network (CAN) bus networking is available to link units together. The designer need only apply a small CAN physical transceiver. The programmer need only use CAN routines out of the extensive library of functions contained within the Software Development Kit (SDK) offered with all Freescale Semiconductor DSPs.

> **Software.** Out-of-the-box software components for all on-chip peripherals, in combination with software libraries for motor control, communication, and signal processing, make it easy to develop the most demanding real-time embedded applications.

Putting It All Together

The DSP56F80x series of Freescale Semiconductor DSPs have more than ample processing power and many microcontroller-like features, making them well suited to general embedded processing and control tasks. Though explicitly designed with motor control in mind, this family’s extensive collection of peripherals, combined with your ingenuity, can be applied to solve a wide range of design problems. In this instance, we’ve shown how a DSP56F805 can be used to form the heart of magnetic card strip encoder equipment without additional processing power requirements and with only minimal additional circuitry.

Development Tools

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Product Name</th>
<th>Vendor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Processor Expert</td>
<td>Freescale Semiconductor</td>
<td>Software infrastructure that allows development of efficient, high-level software applications that are fully portable and reusable across all 56800/E family of processors.</td>
</tr>
<tr>
<td>Software</td>
<td>CWDSP56800</td>
<td>Freescale Semiconductor</td>
<td>CodeWarrior Software Development Tools for DSP56800 (Metrowerks)</td>
</tr>
<tr>
<td>Hardware</td>
<td>DSP56F801EVM</td>
<td>Freescale Semiconductor</td>
<td>Evaluation Module for the DSP56F801 and DSP56F802</td>
</tr>
<tr>
<td>Hardware</td>
<td>DSP56F803EVM</td>
<td>Freescale Semiconductor</td>
<td>Evaluation Module for the DSP56F803</td>
</tr>
<tr>
<td>Hardware</td>
<td>DSP56F805EVM</td>
<td>Freescale Semiconductor</td>
<td>Evaluation Module for the DSP56F805</td>
</tr>
<tr>
<td>Hardware</td>
<td>MC56F8367EVM</td>
<td>Freescale Semiconductor</td>
<td>Evaluation Module for the 56F834x, 56F835x, 56F836x</td>
</tr>
<tr>
<td>Development Kit</td>
<td>DSPOSRTOS</td>
<td>Freescale Semiconductor</td>
<td>Emulation Support for DSP56F80x Processors (Requires Ethernet Network)</td>
</tr>
</tbody>
</table>

Disclaimer

This document may not include all the details necessary to completely develop this design. It is provided as a reference only and is intended to demonstrate the variety of applications for the device.

Learn More: Contact the Technical Information Center at +1-800-521-6274 or +1-480-768-2130.

For more information about Freescale products, please visit www.freescale.com.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.