Deep Dive on **Kinetis E Series MCUs** with 5 V I/O and High EMC Performance

FTF-IND-F0471

Allen Lv | Product Marketing
William Jiang, Dennis Lui | Application

MAY. 2014
Agenda

• Kinetis E MCU Overview by Marketing
• Deep Dive of Key Features
• Real Case EMC Design Guideline
• Freedom and KE0x Peripheral Driver Lib
• Demo
• Summary
Kinetis E Overview
Market Needs 5V 32b KE

Key Segment – Appliances

Target Customers

Electrolux
Whirlpool
LG
GREE
Haier
Samsung
Indesit
Midea
B/S/H/

Changing Product Mix in Appliance

Appliance MCU TAM

16/32-bit TAM Grows from $143M to $278M

2010
2014

- COLD (Refrigeration)
- HGT (Oven, Hobs, uWave)
- RAC (Room Air-Con)
- WET (Washer/Dish/Dryer)
Kinetis E

Strong Robustness
High Efficiency
Low Cost

Strong Robustness – EMC/ESD design technology ensure strong noise immunity performance

High Efficiency – Cortex-M0+ core up to 48MHz and 40x more than 8/16-bit MCUs

Low Cost – Optimized for cost-sensitive applications offering low pin count option
Kinetis E-Series: Target Market

- Appliance
- DC fans
- Sewing Machine
- Elevator
- PLC
- Offline UPS
- Metering
- Breaker
- Surge Protection
- DC/DC

Where need **Robustness**

<table>
<thead>
<tr>
<th>Timers</th>
<th>System</th>
<th>Core Complex</th>
<th>Analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>6ch Flex Timer</td>
<td>PMU</td>
<td>ARM Cortex™ M0+ Up to 48 MHz</td>
<td>12-bit ADC</td>
</tr>
<tr>
<td>2 ch FlexTimer</td>
<td>Watchdog</td>
<td>Single cycle 32-bit x 32-bit multiplier</td>
<td>2 x Analog Comparator</td>
</tr>
<tr>
<td>PIT</td>
<td>LVD / POR</td>
<td>Single cycle I/O access port</td>
<td></td>
</tr>
<tr>
<td>PWT</td>
<td>CRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTC</td>
<td>Bit manipulation engine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Interfaces</th>
<th>HMI</th>
<th>Security</th>
<th>Serial Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 128KB Flash</td>
<td>Up to 71 GPIO</td>
<td>64-bit unique identification (ID) number</td>
<td>3 x UART</td>
</tr>
<tr>
<td>Up to 512B EEPROM</td>
<td>KBI</td>
<td></td>
<td>2 x SPI</td>
</tr>
<tr>
<td>Up to 16KB RAM</td>
<td></td>
<td></td>
<td>2 x I2C</td>
</tr>
</tbody>
</table>

Where need **Low Cost** and **High Performance**
Kinetis E Series Product Roadmap

2.7-5.5V MCUs with high reliability and robustness, Based on ARM® Cortex-M® with best-in-class Enablement

KE1xF: High Performance Mix Signal

KE1xZ: Performance enhancement Feature optimization

KE0xZ: M0+ with base feature set.

Memory Density

8KB 16KB 32KB 64KB 128KB 256KB 512KB

KE0xZ – General Purpose, ROM, DMA
KE0xF – Entry Level
KE1xF – High Performance, Mix Signal
KE1xZ – General Purpose, ROM, DMA
KE0xF – Entry Level
KE1xF - High Performance Mix Signal
KE1xZ: Performance enhancement Feature optimization
KE0xZ: M0+ with base feature set.

KE0xF – Entry Level
KE1xF - High Performance Mix Signal
KE1xZ: Performance enhancement Feature optimization
KE0xZ: M0+ with base feature set.

Concept
Planning
Execution
Production
Common Features

<table>
<thead>
<tr>
<th>System</th>
<th>Optional Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM Cortex-M0+ Core, 48MHz [1]</td>
<td>Family</td>
</tr>
<tr>
<td></td>
<td>KE06Z</td>
</tr>
<tr>
<td></td>
<td>KE04Z128</td>
</tr>
<tr>
<td></td>
<td>KE04Z64</td>
</tr>
<tr>
<td></td>
<td>KE04Z8</td>
</tr>
<tr>
<td>Adopted Power Modes, Clock Gating, 2.7V – 5.5V</td>
<td>KE02Z</td>
</tr>
<tr>
<td>Operating Temp: -40 to 105°C</td>
<td></td>
</tr>
</tbody>
</table>

| Clock Management | | | | | |
| External OSC, 4~20MHz, 32KHz | KE04Z128 | 48MHz | 128KB | 16KB | ✓ | ✓ | 12-bit |
| Internal OSC, 32KHz, 1KHz |

Analog Peripherals							
12-Bit ADC	KE04Z64	48MHz	64KB	8KB	✓	✓	12-bit
Analog Comparators	KE04Z8	48MHz	8KB	1KB	✓	✓	12-bit

Serial Interfaces							
SCI	KE02Z	20MHz/40MHz	16-64KB	2-4KB	✓	✓	12-bit
SPI, IIC							
Timers							
Real Time Clock							
16bit Flex timers							
32bit Periodic Interrupt Timer							

\[1\] 20MHz/40MHz for KE02
Kinetics E0x Series Master Block Diagram

Key Features:

- **Core/System**
 - ARM® Cortex®-M0+ up to 48MHz
- **Memory**
 - up to 128KB Flash
 - up to 16KB SRAM
- **Communications**
 - 1 x CAN
 - Multiple serial ports,
 - 3 x UART / 2 x SPI / 2 x I2C
- **Analog**
 - 16ch 12-bit ADC
 - 2x ACMP
- **Timers**
 - 1 x 6ch FTM
 - 2 x 2ch FTM
 - 1 x PIT
 - 1 x PWT
 - RTC
- **Others**
 - Up to 71 I/Os
 - 2.7-5.5V, -40 to 105°C
- **Packages**: 80/64/44/32 LQFP, 64QFP
 24QFN, 20SOIC, 16TSSOP
 Pin compatible within KE
Kinetis E Series: Selling Point - Robust

<table>
<thead>
<tr>
<th>Feature category</th>
<th>Feature</th>
<th>Benefit to customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust</td>
<td>Improved 5V I/O pad with digital filter</td>
<td>Better EMC performance and system robust in the harness environment and easy for PCB layout</td>
</tr>
<tr>
<td>Safety</td>
<td>IEC60730 compliant watchdog, CRC and certified IEC60730 safety S/W library</td>
<td>Makes system more safer while reducing system cost by removing external BOM</td>
</tr>
</tbody>
</table>
Kinetis E Series: Selling Point - Efficiency

<table>
<thead>
<tr>
<th>Feature category</th>
<th>Feature</th>
<th>Benefit to customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast processing</td>
<td>Single cycle 32bx32b ARM Cortex-M0+ core</td>
<td>Much higher performance than M0, and 8/16-bit MCUs</td>
</tr>
<tr>
<td>Fast response</td>
<td>Nested Vectored Interrupt Controller</td>
<td>True hardware interrupt nesting and less interrupt latency than M0 and 8/16-bit MCUs</td>
</tr>
<tr>
<td>Fast response</td>
<td>12-bit x 16ch SAR ADC with 8-entry FIFO</td>
<td>Provide faster sampling rate, higher resolution, and faster response</td>
</tr>
<tr>
<td>Fast response</td>
<td>2x ACMP with 6-bit DAC</td>
<td>Provide over-current, over-voltage protection as well as zero-crossing detection for full voltage range.</td>
</tr>
<tr>
<td>Fast response</td>
<td>Bit manipulation engine</td>
<td>Support bit-band on peripherals that extends the core instructions and generates more efficient code</td>
</tr>
<tr>
<td>Fast response</td>
<td>Single cycle fast GPIO</td>
<td>Provide faster response bit-banging and software protocol emulation without additional BOM</td>
</tr>
</tbody>
</table>
Kinetis E Series: Selling Point - Application Special

<table>
<thead>
<tr>
<th>Feature category</th>
<th>Feature</th>
<th>Benefit to customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor control</td>
<td>6-ch 16-bit Flextimer optimized for motor control with sync to ADC via PDB</td>
<td>Make motor control easier</td>
</tr>
<tr>
<td>High drive</td>
<td>Up to 8 high drive pins with each supporting 20mA</td>
<td>Provide direct connection to LED drive circuit without additional cost</td>
</tr>
<tr>
<td>Data endurance</td>
<td>Up to 256B EEPROM with 500K endurance cycles</td>
<td>Provide longer life time of the NVM</td>
</tr>
<tr>
<td>SMBus</td>
<td>SMBus compatible IIC</td>
<td>Make SMBus connection easier without additional overhead</td>
</tr>
</tbody>
</table>
Kinetis E Series: Selling Point - Save Cost

<table>
<thead>
<tr>
<th>Feature category</th>
<th>Feature</th>
<th>Benefit to customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalable & Pin-Compatible</td>
<td>Wide range of packages with pin-compatible</td>
<td>Makes code easy to reuse and platform design easier</td>
</tr>
<tr>
<td>Low PCBA cost</td>
<td>0.8mm pitch package (64QFP)</td>
<td>Cost down PCBA process</td>
</tr>
<tr>
<td>Lost cost development tool</td>
<td>CW special edition free for 64KB</td>
<td>Cost down development</td>
</tr>
</tbody>
</table>
Kinetis E EMC Performance
Robustness in EFT, PESD and AC Power Relay Tests

Test Conditions
- Microwave Oven Controller board with KE02 as main control MCU
- Board and System level tests based on
 - IEC 61000-4-4(EFT)
 - IEC 61000-4-2(PESD)
 - China Appliance local AC Power Relay test

Test Results
- Board level
 - IEC 61000-4-4(EFT): +/- 4.4kV*
 - IEC 61000-4-2(PESD): Indirect Contact
 - Discharge +/- 20kV
 - China Appliance local test on AC Power Relay:
 - 6-turns without Reset

- System level
 - IEC 61000-4-4(EFT): +/- 4.4kV*
 - IEC 61000-4-2(PESD): Contact
 - Discharge (at the case) +/- 20kV
 - IEC 61000-4-2(PESD): Air Discharge (at the control panel) +/- 15kV

*Limited by the test equipment max output voltage
Deep Dive of Key Features – Cortex-M0+
ARM Cortex-M0+ Processor:
The True 8-bit Replacement

- The smallest, lowest-power ARM processor on the market
- Compatible with all other Cortex-M cores
- The most energy-efficient 32-bit processor ever designed
- Single-cycle 32x32b instruction
- Significant energy efficiency advantages over 8/16-bit
- Processor consumption as low as 9.8μW/MHz in 90nm process, or 52 μW/MHz in 180nm process
- Outstanding results of 1.77 CoreMark/MHz
- I/O low-power improvements with single cycle access to critical peripherals (GPIO ...)
- Relocatable vector table allows for dynamic exception handlers by moving the vector table into RAM
- Micro trace buffer brings fast debug advantages of trace to low-end MCUs (not implemented in KE0x)
32-bit Performance and Functionality With 8-bit Ease-of-Use

Streamlined Architecture
The new cortex-M0+ core strikes the right balance of performance and simplicity needed in entry-level applications.

Accelerated Debugging
Micro trace buffer accelerates software debug without wasting additional I/O. Plus, get faster bug identification and correction with minimal system resources. (Micro trace buffer not implemented in KE0x)

Closer to the Hardware
Single-cycle IO and peripheral bus facilitate bit-banding and software protocol emulation, keeping it an 8-bit ‘look and feel’.

Ultimate Code Density
Cortex-M0+ instruction set provides the most compact code even when compared to legacy 8- and 16-bit architectures. Do more with the same Flash size.

CoreMark Code in kB

CoreMark code compiled optimized for size. A, B, C & D
Benefits of Moving from 8/16-bit to 32-bit ARM Cortex-M0+

8/16-bit

Performance
- Older, slower architectures & technology
- Increased code size/complexity when performing complex math operations

Energy-Efficiency
- Low energy-efficiency

Low Cost
- 6-35kgates
- Variable code density

Ease-of-Development
- Limited addressable memory
- Simplistic interrupt controllers
- Limited scalability (MHz, flash, features)
- Limited ecosystem support

32-bit ARM Cortex-M0+

Performance
- 2x to 40x more than 8/16-bit, 9% more than Cortex-M0
- Fast 32-bit math processing
- Fast single-cycle access to I/O

Energy-Efficiency
- >2x CoreMark/mA than closest 8/16-bit MCU, +30% / CM0

Low Cost
- 12-35kgates
- Excellent code density

Ease-of-Development
- Linear 4GB address space – no need for paging
- Full-featured interrupt controller – simpler s/w architecture
- Huge scalability – h/w and s/w reuse across end products
- Huge ARM ecosystem – off-the-shelf software/tools/training
- Micro Trace Buffer – lightweight, non-intrusive trace (not implemented in Kexx)
Cortex-M Processor Family

Five products, two architectures

<table>
<thead>
<tr>
<th>Processor</th>
<th>Description</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex-M4</td>
<td>High performance data processing & I/O control. Support hardware divide, MAC, bit field processing, DSP. Floating point unit optional (Cortex-M4F).</td>
<td>ARMv7-M</td>
</tr>
<tr>
<td>Cortex-M3</td>
<td>High performance data processing & I/O control. Support hardware divide, MAC (Multiply Accumulate), bit field processing.</td>
<td>ARMv7-M</td>
</tr>
<tr>
<td>Cortex-M0+</td>
<td>General data processing, high performance I/O control, mixed signal ASICs, replacement for 8/16-bit MCUs</td>
<td>ARMv6-M (New)</td>
</tr>
<tr>
<td>Cortex-M0</td>
<td>General data processing, I/O control, mixed signal ASICs, replacement for 8/16-bit MCUs</td>
<td>ARMv6-M</td>
</tr>
<tr>
<td>Cortex-M1</td>
<td>For FPGA designs only. Optimized for FPGA and can work in most FPGA devices</td>
<td></td>
</tr>
</tbody>
</table>
Common Features

- Many features are available on all Cortex-M Microcontrollers
 - NVIC - Nested Vector Interrupt Controller
 - Sleep modes and low power features
 - OS support features such as SysTick timer
 - CMSIS-Core support (API software for processor feature)
 - Debug support
 - Different subset of Thumb-2 Instruction Set Architecture

- Architecture consistency means
 - Using the same tool chain
 - Easy program code reuse
 - Multi-sources possible
NVIC Feature Comparisons

<table>
<thead>
<tr>
<th>NVIC features</th>
<th>Cortex-M0</th>
<th>Cortex-M0+</th>
<th>Cortex-M3</th>
<th>Cortex-M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Number of IRQ</td>
<td>32 + NMI</td>
<td>32 + NMI</td>
<td>240 + NMI</td>
<td>240 + NMI</td>
</tr>
<tr>
<td>System exceptions</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Exception Priority levels</td>
<td>4(prog) + 2 (fixed)</td>
<td>4(prog) + 2 (fixed)</td>
<td>8 to 256(prog) +2(fixed)</td>
<td>8 to 256(prog) +2(fixed)</td>
</tr>
<tr>
<td>Masking registers</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Interrupt Latency (cycles)</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Dynamic priority change</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vector table relocation</td>
<td>No</td>
<td>Yes (optional)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Register accesses</td>
<td>32-bit</td>
<td>32-bit</td>
<td>8/16/32-bit</td>
<td>8/16/32-bit</td>
</tr>
</tbody>
</table>
Interrupt Controller (NVIC)

- The Cortex-M family uses a number of methods to improve interrupt latency. The first one is called tail chaining. And the second method is called late arrival. The third one is Stack pop pre-emption.

- Tail chaining operation
Interrupt Controller (NVIC)

- Late arrival operation
Interrupt Controller (NVIC)

- Stack pop pre-emption operation
Single cycle GPIO

- Provide faster response bit-banging and software protocol emulation without additional BOM
- Up to 50% faster than normal I/O
- Fast GPIO controller (FGPIO) have SET/CLEAR/TOGGLE control for all pins in zero wait states

Enabling highest speed I/O for efficient I/O and peripheral access
Other Key Features
Bit Manipulation Engine

- The BME is a hardware block that resides between the platform and E-Series Core that allows read-modify-write operations to be performed on peripheral registers using data stored in the target address
 - Decorated Stores
 - AND, OR, XOR and Bit field insert (BFI)
 - Decorated Loads
 - Load and clear one bit (LAC1), Load and Set one bit (LAS1), Unsigned bit field extract (UBFX)
Bit Manipulation Engine (BME)

BME decorated references are only available on system bus transactions generated by the processor core.
Example: Decorated Store Logical AND

- The data size is specified by the write operation and can be byte (8 bit), halfword (16 bit) or word (32 bit). The core performs the required write data lane replication on byte and halfword transfers.

<table>
<thead>
<tr>
<th>ioandb</th>
<th>010001</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>mem_addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ioandh</td>
<td>010001</td>
<td>mem_addr</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ioandw</td>
<td>010001</td>
<td>mem_addr</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- where addr[28:26] = 001 specifies the AND operation, and mem_addr[19:0] specifies the address offset into the peripheral space based at 0x4000_0000. The "-" indicates an address bit "don't care".
- Typical operation

 GPIOA_PDOR &= 0x02
- BME operation

 *((unsigned long *)0x440ff000) = 0x02
C code for bit field insertion without BME

```plaintext
0x1128: 0x6ae0  LDR  R0, [R4, #0x2c]
0x112a: 0x4028  ANDS R0, R0, R5
0x112c: 0x21a0  MOVVS R1, #160 ; 0xa0
0x112e: 0x02c9  LSLS R1, R1, #11
0x1130: 0x4301  ORRS R1, R1, R0
0x1132: 0x62e1  STR  R1, [R4, #0x2c]
```

11 cycles, 12 bytes

C code for bit field insertion with BME

```plaintext
BME_BITFIELD_INSERT(u32Addr,16,4) = u32Data; /* write 5 to bit 19..16 */
0x115e: 0x482d  LDR.N R0, ??DataTable14_9 ; 0x5818f040
0x1160: 0x21a0  MOVS R1, #160 ; 0xa0
0x1162: 0x02c9  LSLS R1, R1, #11
0x1164: 0x62e1  STR  R1, [R4, #0x2c]
```

10 cycles, 8 bytes

Speed improved by 9%
Code size improved by ~33%
Bit-band (KE04 and KE06)

- Support uninterruptible atomic read-modify-write operation on RAM-U
- Two 32 MB aliased bit-band regions associated with the two 1 MB bit-band spaces, functional on RAM-U
- Each 32-bit location in the 32 MB space maps to an individual bit in the bit-band region
- A 32-bit write in the alias region has the same effect as a read-modify-write operation on the targeted bit in the bit-band region
 - A 32-bit write in the alias region returns either
 - Writing a value with bit 0 set writes a 1 to the target bit.
 - Writing a value with bit 0 clear writes a 0 to the target bit.
 - A 32-bit read in the alias region returns either
 - a value of 0x0000_0000 to indicate the target bit is clear
 - a value of 0x0000_0001 to indicate the target bit is set
FLASH Memory Controller: FMC

- The FMC sits between the platform masters (Core) and the Flash, accelerates access time with buffers which will provide 0 wait state access times when hit.
- Each access of the Flash pulls next 32-bits into the FMC cache buffer, This way we move 2 instructions and can deliver full performance to the 48MHz bus from the 24Mhz Flash bus.
- When flash cache enabled, the power consumption is also improved
Flash and EEPROM

Flash memory
- 64-bit security and backdoor key
- Automated program and erase algorithm with verify
 - Fast sector erase (sector size = 512B) and longword (32-bit) program operation
 - Flexible protection scheme to prevent accidental program or erase of flash memory
- Accessible 64-byte in hidden non-volatile information block
- Ability to set flash read margin levels

EEPROM
- Single-bit fault correction and double-bit fault detection within a word during read operations
- Automated program and erase algorithm with verification and generation of ECC parity bits
- Fast sector erase (sector size = 2B) and byte program operation
- Protection scheme to prevent accidental program or erase of EEPROM memory
- Ability to program up to four bytes in a burst sequence
- Ability to set EEPROM read margin levels
- 500K program/erase cycles

KE0x family has another new flash operation feature: read-while-write. It allows read from flash while programming/erasing the flash by setting Enable Stalling Flash Controller bit in MCM_PLACR.
Pulse Width Timer (PWT)

- Capture signal period/frequency directly by h/w in 16-bit resolution
- Provide highest response to system
- Reduce CPU overhead
- Can measure positive and/or negative pulse width
- Programmable triggering edge for starting measurement
- Programmable measuring time between successive alternating edges, rising edges or falling edges
- Programmable prescaler from clock input as 16-bit counter time base
- Two selectable clock sources—bus clock and alternative clock
- Four selectable pulse inputs
- Programmable interrupt generation upon pulse width value updated and counter overflow
4-wire I²C support

- Flexible to interface with external custom line drivers
- Provide higher bus drive capability
- Provide higher noise immunity in EMC environment
- Reduced total system BOM
- SMBus spec v2 compatible
- 5-bit glitch input filter
- Range slave address recognition
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Programmable glitch input filter
- Low power mode wakeup on slave address match
- Can be disabled to support traditional 2-wire bi-dir I²C
Controller Area Network (CAN)

- Fully compliant with CAN 2.0A/B protocol
- Automotive proven leading edge CAN controller popular in tough noise EMI environment
- 5 Receive buffers with FIFO storage scheme
- 3 Transmit buffers with internal prioritization using a ‘local priority’ concept
- Flexible maskable identifier filters to receive wanted messages
- Programmable functionality:
 - Wake-up with integrated low-pass filter
 - Loop-back mode supports self-test operation
 - Listen-only mode for monitoring of CAN bus
 - bus-off recovery functionality
- Separate signaling and interrupt capabilities for all CAN receiver and transmitter error states (Warning, Error Passive, Bus-Off)
- Programmable clock source either system clock or crystal oscillator output
- Internal timer for time-stamping of received and transmitted messages
- Low power modes: Sleep, Power Down and MSCAN Enable

![CAN Network Diagram]
Controller Area Network (CAN)

msCAN Receive / Transmit Engine

Internal Priority Scheduling

Global Identifier Filtering:

- 2 x 32 bit
- or 4 x 16 bit
- or 8 x 8 bit
IEC60730 Safety Standard Class B Cert. for Household Appliance

- IEC60730 safety standard classification:
 - Class A: Not intended to be relied upon for the safety of the equipment
 - Class B: To prevent unsafe operation of the controlled equipment
 - Class C: To prevent special hazards

<table>
<thead>
<tr>
<th>Test</th>
<th>IEC 60730 Class B</th>
<th>IEC 60730 Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60730 periodic test</td>
<td>8-bit S08</td>
<td>8-bit S08</td>
</tr>
<tr>
<td></td>
<td>16-bit DSC568XXX</td>
<td>16-bit DSC568xxx</td>
</tr>
<tr>
<td></td>
<td>32-bit MCF51xx</td>
<td>32-bit MCF51xx</td>
</tr>
<tr>
<td></td>
<td>32-bit Kinetis</td>
<td></td>
</tr>
<tr>
<td>CPU register test</td>
<td>Stuck at</td>
<td>Walkpat</td>
</tr>
<tr>
<td></td>
<td>Stuck at</td>
<td>Walkpat</td>
</tr>
<tr>
<td></td>
<td>Stuck at</td>
<td>Walkpat</td>
</tr>
<tr>
<td>CPU instruction test</td>
<td>N/A</td>
<td>CPU instr. test</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>CPU instr. test</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>CPU instr. test</td>
</tr>
<tr>
<td>RAM test</td>
<td>March C, X</td>
<td>Walkpat</td>
</tr>
<tr>
<td></td>
<td>March C</td>
<td>Walkpat</td>
</tr>
<tr>
<td></td>
<td>March C</td>
<td>Walkpat</td>
</tr>
<tr>
<td>Flash test</td>
<td>CRC 16-bit</td>
<td>CRC 16-bit</td>
</tr>
<tr>
<td></td>
<td>CRC 16-bit</td>
<td>CRC 16-bit</td>
</tr>
<tr>
<td></td>
<td>CRC 16-bit</td>
<td>CRC 16-bit</td>
</tr>
<tr>
<td>Watchdog test</td>
<td>Timeout and reset</td>
<td>Timeout and reset</td>
</tr>
<tr>
<td></td>
<td>Timeout and reset</td>
<td>Timeout and reset</td>
</tr>
<tr>
<td></td>
<td>Timeout and reset</td>
<td>Timeout and reset</td>
</tr>
</tbody>
</table>

freescale
IEC60730 Safety Standard Class B Cert. for Household Appliance

• IEC60730 safety standard peripherals
 - **Watchdog**: independent clock source and robust refresh & protection mechanism, provide safety mechanism to monitor
 ▪ The flow of the software
 ▪ Interrupt handling & execution
 ▪ CPU clock (too fast, too slow and no clock)

 - **Cyclic Redundancy Check** (CRC): provides a fast mechanism for
 ▪ Testing the Flash memory
 ▪ Check on serial communication protocols (UARTS, I2C, SPI)
Simple Power Mode

#### Core power mode	System/chip power Mode
RUN | RUN
Sleep | WAIT
Deep sleep | STOP

<table>
<thead>
<tr>
<th>type</th>
<th>condition</th>
<th>core/bus clock</th>
<th>VDD</th>
<th>clock gating</th>
<th>IDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDD</td>
<td>Wait mode, run code in Flash</td>
<td>40M:20M</td>
<td>5V</td>
<td>ON</td>
<td>7.46mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>OFF</td>
<td>5.98mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M:20M</td>
<td>5V</td>
<td>ON</td>
<td>6.95mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>OFF</td>
<td>5.47mA</td>
</tr>
<tr>
<td></td>
<td>LVD off</td>
<td></td>
<td>5V</td>
<td>OFF</td>
<td>1.2uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>OFF</td>
<td>1.1uA</td>
</tr>
<tr>
<td>SIDD</td>
<td>LVD on</td>
<td></td>
<td>5V</td>
<td>-</td>
<td>126.8uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>-</td>
<td>122.8uA</td>
</tr>
<tr>
<td></td>
<td>LVD off, ADC on</td>
<td></td>
<td>5V</td>
<td>-</td>
<td>39.7uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>-</td>
<td>39.2uA</td>
</tr>
<tr>
<td>RIDD</td>
<td>run code in Flash FEI mode</td>
<td>40M:20M</td>
<td>5V</td>
<td>ON</td>
<td>10.70mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>OFF</td>
<td>9.23mA</td>
</tr>
<tr>
<td></td>
<td>run code in Flash FEI mode</td>
<td>20M:20M</td>
<td>5V</td>
<td>ON</td>
<td>8.53mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>OFF</td>
<td>7.04mA</td>
</tr>
<tr>
<td></td>
<td>run code in Flash FEI mode</td>
<td>40M:20M</td>
<td>5V</td>
<td>ON</td>
<td>11.19mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>ON</td>
<td>10.24mA</td>
</tr>
<tr>
<td></td>
<td>run code in Flash FEI mode</td>
<td>20M:20M</td>
<td>5V</td>
<td>ON</td>
<td>8.94mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>ON</td>
<td>8.01mA</td>
</tr>
<tr>
<td></td>
<td>run code in Flash FEI mode</td>
<td>40M:20M</td>
<td>5V</td>
<td>ON</td>
<td>13.96mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>ON</td>
<td>12.83mA</td>
</tr>
<tr>
<td></td>
<td>run code in Flash FEI mode</td>
<td>20M:20M</td>
<td>5V</td>
<td>ON</td>
<td>11.265mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3V</td>
<td>ON</td>
<td>10.246mA</td>
</tr>
</tbody>
</table>
Module to Module Interconnection
Use case 1: FTM2 sync ADC while ACMP generates fault to FTM2
Use case 2: UART0 TXD modulation for Infrared
Use case 3: UART0 RX filter for Infrared demodulation
Use case 4: UART0 RX capture by FTM0 ch1
Fast FlexTimer (FTM)

- Optimized for motor control and power conversion applications
- FTM clock as high as CPU clock (up to 48MHz)
- Generation of independent, complementary and asymmetric PWM
- Hardware dead time insertion
- Rich PWM synchronization scheme and fault protection
- PWM output masking and polarity control
- Enhanced triggering functionality (channel match trigger and init trigger)

- Dual edge capture
- Immediate PWM registers load
- Invert control/channel swap
- Fault input polarity control
- Programmable TOF frequency
- Software output control
- Debug mode function (The FTM can be set to still function when the debug mode is entered)
- Can sync with ADC via programmable delay block
FlexTimer

- Complementary PWM
 - Channel \(<n>\) controls first edge of PWM, while \(<n+1>\) controls 2nd PWM edge
FlexTimer

- Deadtime insertion
 - Deadtime insertion on either rising edge or falling edge
 - Counter clock derived from 1/4/16 system clocks
 - Count from 1 to 63
 - Dead time from 1 to 1008 system clocks (0.05 to 50.4us @20MHz)
• PWM synchronization
 – Provide opportunity to
 ▪ force FTM counter to its initial value (CNTINH:L) and the channel outputs are forced to initial value (known as FTM counter synchronization) and
 ▪ update 3 kinds of registers (MOD, CnV, OUTMASK[CHnOM]) with their write buffers and sync two or more FTMs
 – Trigger event: hardware trigger or software trigger
 ▪ Update point: boundary cycle
 • Minimum/low boundary (FTM counter == CNTINH:L)
FlexTimer

- PWM Synchronize with ADC
 - ADC sampling helps to filter the measured current – anti-aliasing
 - noise free sampling possible when the switch is inactive
 - Conversion at the point when the shunt resistor signal is available
FlexTimer Fault Protection

- Channel outputs are forced to a safe value when a fault is detected
 - Up to 4 fault control input pins with fault filters able to filter glitches of 15 system clocks wide
 - Manual fault clearing (output re-enabled only when Fault flag cleared by s/w) and automatic fault clearing (output re-enabled when fault input returns to 0)
FlexTimer Dual Edge Capture

- One-shot or continuous mode
 - Pulse width measurement
 - Period measurement
ADC with 8-entry FIFO

• Linear Successive Approximation algorithm with 8-, 10-, or 12-bit resolution
• Up to 16 external analog inputs, external pin inputs, and 5 internal analog inputs including internal bandgap, temperature sensor, and references
• Single or Continuous Conversion (automatic return to idle after single conversion)
• Operation in wait or stop3 modes for lower noise operation
• Automatic compare with interrupt for less-than, or greater-than or equal-to programmable value
• 8-entry channel FIFO and result FIFO to minimize the CPU overhead
 - Configurable FIFO depth from 2 to 8 entries as FIFO full condition
 - When channel FIFO is full:
 ▪ For software trigger mode
 • Immediately start the first channel conversion, after the previous conversion completes, start the next conversion until the conversion of the last channel in FIFO depth completed, set conversion complete COCO flag
 ▪ For hardware trigger mode
 • When the first trigger occurs, start the first conversion, after previous conversion completes and when the next trigger occurs, start the next conversion until all channels in FIFO depth completes conversion, then set conversion complete COCO flag
ADC with 8-entry FIFO

FIFO scan mode
- Always use the first dummied channel in spite of the value in the input channel FIFO to simplify the dummy work of input channel FIFO.
- ADC conversion start to work in FIFO mode as soon as the first channel is dummied; when the previous conversion is completed, start the next conversion until the result FIFO is full and then set conversion complete COCO flag.
- In continuous conversion in which the ADC_SC1[ADCO] bit is set, the ADC starts next round of conversion immediately when all conversions are completed.

```
Write ADC_SC1_ADCH
Write ADC_SC1_ADCH
Write ADC_SC1_ADCH
Input channel FIFO

8
N
2
1
```

```
Channel conversion

FIFO Full

N

COCO = 1
1
2
H/W trigger
H/W trigger
H/W trigger
```
ADC with FIFO

- ADC hardware trigger selection
 - RTC overflow/ PIT overflow/FTM2 trigger (match trigger or initialization trigger) with 8-bit programmable delay

NOTE: different devices may have different settings
Watchdog (WDOG)

- Compliant with IEC60730 safety standard
- Independent clock source
 - Internal 32 kHz RC oscillator
 - Internal 1 kHz RC oscillator
 - External clock
- 16-bit Programmable timeout period with optional fixed 256 clock prescaler when longer timeout periods are needed
- Robust write sequence for counter refresh
 - Refresh sequence of writing 0x02A6 and then 0x80B4 MUST be within 16 bus clocks
Watchdog (WDOG)

- Window mode option for the refresh mechanism
 - Programmable 16-bit window value
 - Provides robust check that program flow is faster than expected
 - Early refresh attempts trigger a reset
- Robust write sequence for unlocking write-once configuration bits
 - Configuration bits and registers are write-once-after-reset, to ensure watchdog configuration cannot be mistakenly altered
 - Unlock sequence of writing 0x20C5 and then 0x28D9 within 16 bus clocks for allowing updates to write-once configuration bits
- Flexible test mode enabling fast testing watchdog in the safety environment (either high 8-bit counter or lower 8-bit counter for comparison)
- Backup reset to prevent hardware lockup condition driven by bus clock
Cyclic Redundancy Check (CRC)

- 16/32-bit CRC code for error detection
- Programmable 16/32-bit initial seed value
- Programmable 16/32-bit polynomial
- Reverse input and output data by bit in a byte (no byte reverse)
- Final complement output of result

<table>
<thead>
<tr>
<th>Name</th>
<th>Poly</th>
<th>Seed</th>
<th>Final XOR?</th>
<th>Type of Transpose for Input</th>
<th>Type of Transpose for CRC Read</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-16</td>
<td>0x1021</td>
<td>0xFFFF</td>
<td>No</td>
<td>No transpose</td>
<td>No transpose</td>
<td>CRC-CCITT, ADCCP, SDLC/HDLC</td>
</tr>
<tr>
<td></td>
<td>(ITU-T V.41)</td>
<td>0x0000 (ITU-T T.30, X.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMODEM</td>
<td>0x8408</td>
<td>0x0000</td>
<td>No</td>
<td>Transpose only bits in a byte</td>
<td>Transpose only bits in a byte</td>
<td>XMODEM</td>
</tr>
<tr>
<td>ARC</td>
<td>0x8005</td>
<td>0x0000</td>
<td>No</td>
<td>Transpose only bits in a byte</td>
<td>Transpose only bits in a byte</td>
<td>ARC (zip file)</td>
</tr>
<tr>
<td>CRC-32</td>
<td>0x04C11DB7</td>
<td>0xFFFF FFFF</td>
<td>Yes</td>
<td>Transpose only bits in a byte</td>
<td>Transpose both bits and bytes</td>
<td>PKZIP, AUTODIN II, Ethernet, FDDI</td>
</tr>
</tbody>
</table>
Analog Comparator (ACMP)

- **Input0**: Negative
- **Input1**: Positive
- **Enable**: MUX
- **Hysteresis**: MUX
- **Edge Control**: MUX
- **Falling edge interrupt**: MUX
- **Rising edge interrupt**: MUX
- **Either edge interrupt**: MUX
- **Pin-out**: MUX
- **FTM1 ch0**: MUX
- **SCI0 input**: MUX

Pin-Out: PTA0/KB10P0/FTM0 CH0/ACMP0/ADP0
PTA1/KB10P1/FTM0CH1/ACMP1/ADP1

Diagram:
- SCI0 -> FXD0
- To SCI0 RxD Capture Function
- From Internal or External Reference Voltage

Components:
- **SCI0**: Serial Communication Interface
- **FXD0**: Data Output
- **RXDFE**: Receiver Data Frame Error

Brands:
- **Freescale**: Manufacturer

Notes:
- **External Use**: 61
Periodic Interrupt Timer (PIT)

- An array of 32-bit count-down-to-0 timers that can be used to raise interrupts and triggers
- KE02 has two timers in a PIT
- Each timer can work independently
- Two timer can be chained to form a 64-bit timer
- A timer can be programmed to function in debug mode
EMC Design Guideline for KE0x
Real Case EMC Performance with Microwave Oven
Background

• Internal evaluation on EMC performance in board level and system level.

• Identify device capability in real application environments.

• A simplify microwave oven reference design is developed as a test platform.

• Include all hardware, firmware and mechanical design to provide a stable, controllable and precise environment for EMC measurement.
Test Platform

Application: Home Appliance
Product: Microwave oven
MCU: MKE02Z64VLD2 (64-LQFP)
Board: KE02 Controller Board with Power Supply
Test Results

Board level:
- **IEC 61000-4-4(EFT):** +/- 4.4kV*
- **IEC 61000-4-2(ESD):** Indirect Contact Discharge +/- 20kV
- **China Appliance local test on AC Power Relay:** 6-turns without Reset

System level
- **IEC 61000-4-4(EFT):** +/- 4.4kV*
- **IEC 61000-4-2(ESD):** Contact Discharge (at the case) +/- 20kV
- **IEC 61000-4-2(ESD):** Air-Discharge (at the control panel) +/- 15kV

Limited by the test equipment max output voltage
PCB Layout Recommendation

Ground Plane Connection:

- Rotate the KE02 package 45 degree for more easy routing on I/O pins.
- Fill up a ground plane underneath the MCU and connect all VSS pins together to ensure all VSS pins are kept at same potential level.
- The MCU ground plane can be further extended to the package corner points to achieve short ground paths with minimum loop area for other peripheral components around the MCU.
- Use separated ground trace to avoid ESD discharge energy directly inject to MCU ground.
PCB Layout Example 1 (Refer to AN4779)

Fill up a ground plane underneath the MCU and connect all VSS pins together with same potential level.

Minimize the ground loops by use of the corner points for peripheral components around the MCU.

Avoid the ESD discharge energy injects into the 5V GND directly.
Crystal Oscillator Ground Connection:

- Place oscillator circuit components as close as possible to the XTAL and EXTAL pins.
- Do not place any signal trace near crystal circuit or across the bottom side of the circuit.
- Connect crystal oscillator load capacitors ground to the common ground plane.
- Route ground traces in the form of a guard ring, along with the traces connecting to the EXTAL and XTAL pins can minimize the noise coupling into the crystal circuit.
PCB Layout Example 2 (Refer to AN4779)

- Connect crystal loading capacitors to a common ground plane.
- Avoid any signal trace near the oscillator circuit or across the bottom side of the circuit.
- Add a guard ring (a ground trace with no current flow).
- Place the oscillator circuit to the EXTAL and XTAL pins as close as possible.
Defensive Software Design

• The software design cannot change the physical media which couples the noise into the system, or reduce the absolute magnitude of noise generated from external sources.

• The software must be able to identify a particular event if it is a false alarm triggered by noise sources or it is a normal driven event and then make a smart decision on corresponding actions.

• Good defensive software design is one of the key factors to improve overall performance, system protection and operating stability in noisy environments (e.g. EMC).
System Configuration

Software can act as Digital Filter to suppress EMC noise
Implementations

• Enable Watch-Dog to avoid code runaway.
• Refresh data direction setting registers periodically.
• Fill unused memory to avoid code runaway.
• Define all interrupt vectors even those that are not used.
• Select Frequency Locked Loop (FLL) engaged mode.
• Always re-confirm edge triggered event.
• Enable digital filter on input port.
Application Note for EMC

- AN4779
 - EMC Design Tips for Kinetis E Family
- AN4438
 - EMC Design Considerations for MC9S08PT60
- AN4476
 - System Design Guideline for 5V 8-bit families in Home Appliance Applications
- AN4463
 - How To Develop a Robust Software in Noise Environment
- AN2321
 - Designing for Board Level Electromagnetic Compatibility
- AN2321_GB
 - Designing for Board Level Electromagnetic Compatibility (Chinese Version)
- AN2764
 - Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1050
 - Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1259
 - System Design and Layout Techniques for Noise Reduction in MCU-Based Systems
Application Note for EMC

- AN1263
 - Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN1705
 - Noise Reduction Techniques for Microcontroller-Based Systems
- AN2015
 - Power-On, Clock Selection, and Noise Reduction Techniques for the Motorola MC68HC908GP32
- AN1744
 - Resetting Microcontrollers During Power Transitions
- EB413
 - Resetting MCUs
- AN1783
 - Determining MCU Oscillator Start-up Parameters
- EB396
 - Use of OSC2/XTAL as a Clock Output on Motorola Microcontrollers
- AN1706
 - Microcontroller Oscillator Circuit Design Considerations
- EB398
 - Techniques to Protect MCU Applications Against Malfunction Due to Code Run-Away
Freedom and KE0x Driver Lib
Kinetis E Series MCUs Entry-level Enablement

Hardware

Freescale Freedom Development Platform
FRDM-KE02Z40M
FRDM-KE04Z
FRDM-KE06Z

- Low-cost platform for entry-level developers ($12.95 USD)
- Features the Freescale open standard embedded serial and debug adapter (OpenSDA).

IDE & Code Generation

Freescale & 3rd party IDEs
- Freescale CodeWarrior IDE v10.5: free 64KB
- Keil MDK: free 32KB
- IAR EWARM: free 32KB
- Atollic TrueStudio: free 8KB
- GCC ARM Embedded via Launchpad.net

Freescale Processor Expert Code Generator
- Free software generation tool for device drivers / start-up code
- 7 steps from project creation to debug – dramatically reduces development time
- Available within CodeWarrior IDE or as a standalone plug-in for IAR/Keil/GNU IDEs

Product Selection

Solution Advisor
www.freescale.com/sa
- Web-based interactive MCU selector
- Filters for operating characteristics, packaging, memory configuration & peripherals. Verifies muxing compatibility
- Save, download and print summary reports and pin mixing configurations

Arduino™ Compatible

Freescale & 3rd party IDEs:
- Freescale CodeWarrior IDE v10.5: Free
- Keil MDK: Free
- IAR EWARM: Free
- Atollic TrueStudio: Free
- GCC ARM Embedded via Launchpad.net
The Freescale Freedom development platform is a set of software and hardware tools for evaluation and development. It is ideal for rapid prototyping of microcontroller-based applications. The Freescale Freedom KE02Z hardware, FRDM-KE02Z, is a simple, yet sophisticated design featuring a Kinetis E Series microcontroller, the industry’s 5V microcontroller built on the ARM® Cortex™-M0+ core.

Features:
• MKE02Z64VQH2 MCU – 20MHz, 64KB Flash, 4KB SRAM, 64QFP
• Capacitive touch slider, MMA8451Q accelerometer, Tri-color LED
• Flexible power supply options – USB, external source
• Easy access to MCU I/O
• IrDA transmitter and receiver
• Thermistor sensor to measuring temperature
• Form factor compatible with Arduino™ R3 pin layout
• New, OpenSDA debug interface
 - Mass storage device flash programming interface (default) – no tool installation required to evaluate demo apps
 - P&E Debug interface provides run-control debugging and compatibility with IDE tools
 - CMSIS-DAP interface: new ARM standard for embedded debug interface

Get to know KE02 freedom

USB
OpenSDA

Arduino R3 compatible I/O Header

KE02Z64VQH2

Arduino R3 compatible I/O Header

RGB LED

Reset Button

IrDA

Accelerometer

Thermistor

Arduino R3 compatible I/O Header

Touch Slider

Arduino R3 compatible I/O Header
KE0x driver library

- ARM CMSIS complaint coding format more friendly for ARM users
- Unified coding style for better readability, reusability, portability, and maintenance.
- Unified API easy to understand for other module developers
- More efficient code by using inline functions
- Cover all on-chip peripherals providing low level driver(register access) and high level driver
- Rich sample code for each module from simple to complicated
- API reference manual help user rapid to learn how to use it
Lab Demo

<table>
<thead>
<tr>
<th>No</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab demo for FAT and FCC – contain of IrDA, accelerometer, thermistor, SPI communication, RTC, slip touch down/up to switch demo.</td>
</tr>
<tr>
<td>2</td>
<td>Flash demo</td>
</tr>
<tr>
<td>3</td>
<td>Low Power demo</td>
</tr>
<tr>
<td>4</td>
<td>BLDC demo</td>
</tr>
<tr>
<td>5</td>
<td>RTC – calendar with triggering other modules</td>
</tr>
<tr>
<td>6</td>
<td>SPI - communication</td>
</tr>
<tr>
<td>7</td>
<td>Touch sensing with TSS lib demo</td>
</tr>
<tr>
<td>8</td>
<td>UART with interrupt demo</td>
</tr>
<tr>
<td>9</td>
<td>Fast GPIO demo</td>
</tr>
<tr>
<td>10</td>
<td>Flextimer demo</td>
</tr>
<tr>
<td>11</td>
<td>PIT demo</td>
</tr>
<tr>
<td>12</td>
<td>ADC FIFO</td>
</tr>
<tr>
<td>13</td>
<td>ACMP with trigger and interrupt</td>
</tr>
<tr>
<td>14</td>
<td>CRC demo</td>
</tr>
</tbody>
</table>
Summary

• Presented general Kinetis E overview
• Deep dive the key features
• EMC design guideline
• Talked about freedom and KE0x peripheral driver
• Demo
Designing with Freescale

Tailored live, hands-on training in a city near you

2014 seminar topics include

• QorIQ product family update
• Kinetis K, L, E, V series MCU product training

freescale.com/DwF