Data Path Acceleration Architecture (DPAA) Debug

FTF-NET-F0148

Kelly Johnson | Applications Engineering

A P R . 2 0 1 4
Session Introduction

• This session will take an in-depth look at QorIQ Data Path Acceleration Architecture (DPAA) and how each component interacts with each other and the core. Discussion will focus on debugging common issues such as packet loss and queue manager enqueue rejections.
Session Objectives

- After completing this session you will be able to:
 - Find where missing packets are being dropped or lost in receive path
 - Determine reason for Queue Manager enqueue rejection
 - Identify SDK version of images used on target
Agenda

• Packet Loss
 - Frame Manager Statistics Counters
 - Linux Sysfs
• Queue Manager Enqueue Rejections
 - Frame Queue Descriptor
 - Linux Debugfs
• SDK Version Compatibility
Packet Loss

- Packets sent to the SoC but we have lost track of where they ended up. Missing some or all packets sent to the SoC
- What is Frame Manager doing with the packets it receives? Enqueueing the packets to Queue Manager? Dropping the packets?
- First check whether or not the packets made it through the MAC and all the way to a Frame Manager port
- Use Frame Manager RX port statistics counters registers
 - There’s an easy way to do this when running Linux
Frame Manager (FMan)

- FMan supports a flexible pipeline of packet processing elements.
- Frame data and per frame context is stored in internal memory while frame is processed.
- Frame Processor Manager (FPM) “schedules” frames for processing by different elements to create appropriate pipeline.
- Default pipeline configured for each port.
Packet Loss
Frame Manager Buffer Manager Interface (BMI)
Rx Port Statistics Counters (1/2)

- **FMBM_RFRC** – Receive Frame Counter
 - Total number of frames received on the Rx port

- **FMBM_RBFC** – Bad Frames Counter
 - Number of frames received on the Rx port with an error indication.
 - Error cause could be FCS error, MAC FIFO overflow, code error, etc.
 - These frames are discarded and not shown to receive queues, unless FMBM_RCFG[FDOVR] is set.
 - Rx FD Status Field “FPE” (frame physical error) bit will be set.

- **FMBM_RFFC** – Filter Frames Counter
 - Number of frames received on the Rx port that were filtered out by the parse and classify modules of the Fman.
 - See Rx FD Status Field.
 - These frames are discarded and not shown to receive queues, unless FMBM_RCFG[FDOVR] is set.
Frame Manager Buffer Manager Interface (BMI)
Rx Port Statistics Counters (2/2)

• FMBM_RFDC – Frames Discard Counter
 - Number of frames received on the Rx port that were *not able to enter the receive queue system* due to WRED algorithm. Other reasons for enqueue reject may be tail drop, out of service FQ, etc.

• FMBM_RODC – Out of Buffers Discard Counter
 - Number of received frames that were discarded due to lack of external buffers.

• FMBM_RDBC – Buffer Deallocate Counter
 - Number of buffer deallocate operations. The counter increments whenever a buffer is returned to BMan pools.

• FMBM_RLFC – Large Frames Counter
 - Over size indication is marked when frame size exceeds the maximum configured in the corresponding MAC configuration register.
Frame Manager Queue Manager Interface (QMI)

Rx Port Register

- FMQM_PnETFC - PortID n Enqueue Total Frame Counter
 - Number of enqueue operations performed for this portID

- For further information regarding these registers, see Data Path Acceleration Architecture Reference Manual (DPAARM)
Linux Sysfs Support for Fman Rx Port Statistics

Example: FMan1 dTSEC5

$ls /sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/*

/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_dealloc_buf
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_discard_frame
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_enq_total
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_frame
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_rx_bad_frame
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_rx_filter_frame
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_rx_large_frame
/sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/port_rx_out_of_buffers_discard

$cat /sys/devices/ffe000000.soc/ffe400000.fman/ffe48c000.port/statistics/*

 fm0-port-rx4 counter: 0
 fm0-port-rx4 counter: 0

CCSRBAR + FMan1 Base Address + HW Ports Base Address + HW Port ID
0xF_FE00_0000 + 0x40_0000 + 0x8_0000 + 0x0_C000 = 0xF_FE48_C000
Frame Manager Hardware PortIDs

Each hardware port on the FMan has its own hardware PortID. This table specifies the super-set of all hardware PortIDs. See Table 8-14 and the applicable DPAA-enabled SoC reference manual for device specific information related to availability of FMan ports on each device.

Table 8-13. Hardware PortIDs

<table>
<thead>
<tr>
<th>Type</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline/Host Command 1</td>
<td>0x01</td>
</tr>
<tr>
<td>Offline/Host Command 2</td>
<td>0x02</td>
</tr>
<tr>
<td>Offline/Host Command 3</td>
<td>0x03</td>
</tr>
<tr>
<td>Offline/Host Command 4</td>
<td>0x04</td>
</tr>
<tr>
<td>Offline/Host Command 5</td>
<td>0x05</td>
</tr>
<tr>
<td>Offline/Host Command 6</td>
<td>0x06</td>
</tr>
<tr>
<td>Offline/Host Command 7</td>
<td>0x07</td>
</tr>
<tr>
<td>Offline/Host Command 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>PortID</th>
<th>Tx</th>
<th>Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2.5 Gbps Eth 1</td>
<td>0x28</td>
<td>0x08</td>
<td></td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 2</td>
<td>0x29</td>
<td>0x09</td>
<td></td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 3</td>
<td>0x2a</td>
<td>0x0a</td>
<td></td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 4</td>
<td>0x2b</td>
<td>0x0b</td>
<td></td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 5</td>
<td>0x2c</td>
<td>0x0c</td>
<td></td>
</tr>
</tbody>
</table>

Rx PortIDs
Frame Manager Hardware PortIDs

<table>
<thead>
<tr>
<th>Type</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2.5 Gbps Eth 6</td>
<td>0x2d</td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 7</td>
<td>0x2e</td>
</tr>
<tr>
<td>1/2.5 Gbps Eth 8</td>
<td>0x2f</td>
</tr>
<tr>
<td>10 Gbps Eth 1 or 2.5 / 1 Gbps Eth 9</td>
<td>0x30</td>
</tr>
<tr>
<td>10 Gbps Eth 2 or 2.5 / 1 Gbps Eth 10</td>
<td>0x31</td>
</tr>
</tbody>
</table>

1. Exist only if ports 0x11/0x31 does not exist
2. In some SoCs only 1GbE is supported
3. In P1023 this port be used only if O/H 0x01 is disabled and vice-versa.

FMan1 TGEC:
cat /sys/devices/ffe000000.soc/ffe400000.fman/ffe490000.port/statistics/*
Example: FMAN Rx Port Statistics – Discarded Frames

```bash
# cat /sys/devices/ffe000000.soc/ffe400000.fman/ffe488000.port/statistics/*

FM 0 Port 0 counter: 71     port_dealloc_buf
FM 0 Port 0 counter: 71     port_discard_frame
FM 0 Port 0 counter: 495255 port_enq_total
FM 0 Port 0 counter: 495255 port_frame
FM 0 Port 0 counter: 0      port_rx_bad_frame
FM 0 Port 0 counter: 0      port_rx_filter_frame
FM 0 Port 0 counter: 0      port_rx_large_frame
FM 0 Port 0 counter: 0      port_rx_out_of_buffers_discard
```

- **FMBM_RFDC – Frames Discard Counter**
 - Number of frames received on the Rx port that were not able to enter the receive queue system due to WRED algorithm. Other reasons for enqueue reject may be tail drop, out of service FQ, etc.
Example: FMAN Rx Port Statistics – Out of Buffers

cat /sys/devices/ffe000000.soc/ffe500000.fman/ffe590000.port/statistics/*

 fm1-port-rx6 counter: 0
 fm1-port-rx6 counter: 0
 fm1-port-rx6 counter: 71836626 port_enq_total
 fm1-port-rx6 counter: 71862438 port_frame
 fm1-port-rx6 counter: 0
 fm1-port-rx6 counter: 0
 fm1-port-rx6 counter: 0
 fm1-port-rx6 counter: 25628 port_rx_out_of_buffers_discard

• Running out of buffers points to congestion in the system
Example: FMAN Rx Port Statistics – No Dropped Packets

```bash
# cat /sys/devices/ffe000000.soc/ffe400000.fman/ffe489000.port/statistics/*
FM 0 Port 1 counter: 0
FM 0 Port 1 counter: 0
FM 0 Port 1 counter: 714541 port_enq_total
FM 0 Port 1 counter: 714541 port_frame
FM 0 Port 1 counter: 0
```

- All packets received on this Rx Port were enqueued to Queue Manager.
- After checking FMan Port statistics, if packets are still unaccounted for, then check MAC counter registers.
- We’ve discussed Rx Counters, there’s also a set of FMan Tx Port Statistics registers.
MAC Layer Receive Counters and Offsets - mEMAC

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100</td>
<td>Receive Ethernet Octets</td>
<td>0x170</td>
<td>Receive 64 Octet Packet</td>
</tr>
<tr>
<td>0x108</td>
<td>Receive Octets</td>
<td>0x178</td>
<td>Receive 65-127 Octet Packet</td>
</tr>
<tr>
<td>0x110</td>
<td>Receive Alignment Error</td>
<td>0x180</td>
<td>Receive 128-255 Octet Packet</td>
</tr>
<tr>
<td>0x118</td>
<td>Receive Valid Pause Frame</td>
<td>0x188</td>
<td>Receive 256-511 Octet Packet</td>
</tr>
<tr>
<td>0x120</td>
<td>Receive Frame</td>
<td>0x190</td>
<td>Receive 512-1023 Octet Packet</td>
</tr>
<tr>
<td>0x128</td>
<td>Receive FCS Error</td>
<td>0x198</td>
<td>Receive 1024-1518 Octet Packet</td>
</tr>
<tr>
<td>0x130</td>
<td>Receive VLAN Frame</td>
<td>0x1A0</td>
<td>Receive 1519-Max Octet Packet</td>
</tr>
<tr>
<td>0x138</td>
<td>Receive Frame Error</td>
<td>0x1A8</td>
<td>Receive Oversized Packet</td>
</tr>
<tr>
<td>0x140</td>
<td>Receive Unicast Frame</td>
<td>0x1B0</td>
<td>Receive Jabber Packet</td>
</tr>
<tr>
<td>0x148</td>
<td>Receive Multicast Frame</td>
<td>0x1B8</td>
<td>Receive Fragment Packet</td>
</tr>
<tr>
<td>0x150</td>
<td>Receive Broadcast Frame</td>
<td>0x1C0</td>
<td>Receive Control Packet</td>
</tr>
<tr>
<td>0x158</td>
<td>Receive Dropped Packets</td>
<td>0x1C8</td>
<td>Receive Dropped Not Truncated</td>
</tr>
</tbody>
</table>

There’s also a set of MAC Transmit Counters.
MAC Layer Receive Counters and Offsets:

- **dTSEC:**
 - 0x21C RBYT Receive byte
 - 0x220 RPKT Receive packet
 - 0x224 RFCS Receive FCS error
 - 0x228 RMCA Receive multicast packet
 - 0x22C RBCA Receive broadcast packet
 - 0x230 RXCF Receive control frame packet
 - 0x234 RXPF Receive PAUSE frame packet
 - 0x238 RXUO Receive unknown OP code
 - 0x23C RALN Receive alignment error
 - 0x240 RFLR Receive frame length error
 - 0x244 RCDE Receive code error
 - 0x248 RCSE Receive carrier sense error
 - 0x24C RUND Receive undersize packet
 - 0x250 ROVR Receive oversize packet
 - 0x254 RFRG Receive fragments
 - 0x258 RJBR Receive jabber
 - 0x25C RDRP Receive drop

- **10GEC:**
 - 0x88 RFRM Receive Frame
 - 0x90 RFCS Receive Frame Check Sequence Error
 - 0x98 RALN Receive Alignment Error
 - 0xA8 RXPF Receive Valid Pause Frame
 - 0xB0 RLONG Receive Frame Too Long Error
 - 0xB8 RFLR Receive Frame Length Error
 - 0xC8 RVLAN Receive VLAN Frame
 - 0xD8 ROCT Receive Octets
 - 0xE0 RUCA Receive Unicast Frame
 - 0xE8 RMCA Receive Multicast Frame
 - 0xF0 RBCA Receive Broadcast Frame
 - 0x120 RDRP Receive Dropped Packets
 - 0x128 REOCT Receive Ethernet Octets
 - 0x130 RPKT Receive Packet Counter

There’s also a set of MAC Transmit Counters
Linux Ethernet Driver for DPAA - Sysfs Support

- DPAA Ethernet Driver exports a series of information in Sysfs such as buffer pool IDs and frame queue IDs used by the interface and MAC registers. Example from SDK 1.5:

```
root@t4240qds:/sys/devices/fsl,dpaa.18/ethernet.20/net/fm1-mac9# ls
addr_assign_type  dev_id  flags  mac_regs  statistics
addr_len           device  fqids  mtu       subsystem
address            device_addr ifalias  netdev_group  tx_queue_len
bpids              device_type ifindex  operstate  type
broadcast          dormant  iflink  queues  uevent
carrier            duplex  link_mode  speed
```

```
root@t4240qds:/sys/devices/fsl,dpaa.18/ethernet.20/net/fm1-mac9/statistics# ls
collisions          rx_errors  rx_packets  tx_errors
multicast           rx_fifo_errors  tx_aborted_errors  tx_fifo_errors
rx_bytes            rx_frame_errors  tx_bytes  tx_heartbeat_errors
rx_compressed       rx_length_errors  tx_carrier_errors  tx_packets
rx_crc_errors       rx_missed_errors  tx_compressed  tx_window_errors
rx_dropped          rx_over_errors  tx_dropped
```
Use Sysfs to Check FQIDs and BPIDs

- root@t4240qds:/sys/devices/fsl,dpaa.18/ethernet.20/net/fm1-mac9# cat fqids
 Rx error: 338
 Rx default: 339
 Rx PCD: 15360 - 15487
 Tx confirmation (mq): 340 - 363
 Tx(recycling): 364 - 387
 Tx error: 388
 Tx default confirmation: 389
 Tx: 390 - 413

- root@t4240qds:/sys/devices/fsl,dpaa.18/ethernet.20/net/fm1-mac9# cat bpids
 32
Queue Manager (Qman) Enqueue Rejections
QMan Enqueue Rejections

• Reasons for an Enqueue Rejection
 - Congestion Group tail drop threshold exceeded
 - WRED congestion avoidance
 - FQ tail drop threshold exceeded
 - Error condition, indicated in QMAN_ERR_ISR
 - Order Restoration enabled and frame arrived in late or early rejection window. Plus a couple others related to order restoration

• Software can check Enqueue Rejection Notice (ERN) message
 - ERN[RC] – rejection code

• QMAN_ERR_ISR[IESI]
 - Invalid Enqueue State
 - FQ is retired or out-of-service (perhaps not initialized)
 - The portal in which the error was detected, and some related error information, are captured when the first such error occurs
 ▪ QMAN_ECSR, QMAN_ECIR[FQID], QMAN_ECIR2[T], QMAN_ECIR2[PORTAL]
Frame Queue Descriptor

FQD Selected Field Description:
- FQD_LINK: Link to the next FQD in a queue of FQDs, used for Work Queues
- ORPRWS: ORP Restoration Window Size
- OA: ORP Auto Advance NESN Window Size
- ODP_SEQ: ODP Sequence Number
- ORP_NESN: ORP Next Expected Sequence Number.
- ORP_EA_HPTR, ORP_EA_TPTR: ORP Early Arrival Head and Tail Pointer
- PFDR_HPTR, PFDR_TPTR: PFDR Head and Tail Pointer
- CONTEXT_A, CONTEXT_B: Frame Queue Context A and B
- STATE: FQ State
- DEST_WQ: Destination Work Queue
- ICS_SURP: Intra-Class Scheduling Surplus or Deficit.
- IS: Intra-Class Scheduling Surplus or Deficit identifier
- ICS_CRED: Intra-Class Scheduling Credit
- CONG_ID: Congestion Group ID
- RA[1-2_SFDR_PTR: SFDR Pointer for Recently Arrived frame # 1 and 2
- TD_MANT, TD_EXP: Tail Drop threshold Exponent and Mantissa
- C: FQD in external memory or in cache (Qman 1.1)
- X: XON or XOFF for flow control command (Qman1.1)
QMan Debugfs – query_fq_fields (Uninitialized FQ)

root@p2041rdb:~# cd /sys/kernel/debugfs/qman

root@p2041rdb: /sys/kernel/debugfs/qman/fqd # echo 1 > query_fq_fields

root@p2041rdb: /sys/kernel/debugfs/qman/fqd # cat query_fq_fields

Query FQ Programmable Fields Result fqid 0x1
 orprws: 0
 oa: 0
 olws: 0
 cgid: 0
 fq_ctrl: None
 dest_channel: 0
 dest_wq: 0
 ics_cred: 0
 td_mant: 0
 td_exp: 0
 ctx_b: 0
 ctx_a: 0x0
 ctx_a_stash_exclusive: None
 ctx_a_stash_annotation_cl: 0
 ctx_a_stash_data_cl: 0
 ctx_a_stash_context_cl: 0
QMan Debugfs – query_fq_fields (Initialized FQ)

root@t4240qds:/sys/kernel/debug/qman# echo 0x3c00 > query_fq_fields
root@t4240qds:/sys/kernel/debug/qman# cat query_fq_fields

Query FQ Programmable Fields Result fqid 0x3c00

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>orprws</td>
<td>0</td>
</tr>
<tr>
<td>oa</td>
<td>0</td>
</tr>
<tr>
<td>olws</td>
<td>0</td>
</tr>
<tr>
<td>cgid</td>
<td>3</td>
</tr>
<tr>
<td>fq_ctrl</td>
<td></td>
</tr>
<tr>
<td>Prefer</td>
<td></td>
</tr>
<tr>
<td>in cache</td>
<td></td>
</tr>
<tr>
<td>Avoid</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td></td>
</tr>
<tr>
<td>Context-A</td>
<td></td>
</tr>
<tr>
<td>stashing</td>
<td></td>
</tr>
<tr>
<td>Congestion</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td></td>
</tr>
<tr>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td>dest_channel</td>
<td>49</td>
</tr>
<tr>
<td>dest_wq</td>
<td>3</td>
</tr>
<tr>
<td>ics_cred</td>
<td>0</td>
</tr>
<tr>
<td>td_mant</td>
<td>0</td>
</tr>
<tr>
<td>td_exp</td>
<td>0</td>
</tr>
<tr>
<td>ctx_b</td>
<td>0xd5</td>
</tr>
<tr>
<td>ctx_a</td>
<td>0x175d70018</td>
</tr>
<tr>
<td>ctx_a_stash_exclusive</td>
<td></td>
</tr>
<tr>
<td>FQ_Ctx Stash</td>
<td></td>
</tr>
<tr>
<td>Frame Annotation Stash</td>
<td></td>
</tr>
<tr>
<td>ctx_a_stash_annotation_cl</td>
<td>1</td>
</tr>
<tr>
<td>ctx_a_stash_data_cl</td>
<td>2</td>
</tr>
<tr>
<td>ctx_a_stash_context_cl</td>
<td>2</td>
</tr>
</tbody>
</table>

Check DPAARM Work Queue Channel Assignments
- Dedicated Channel serviced by software portal 49
- Work Queue number 3
QMan Debugfs – query_fq_np_fields

```
root@t4240qds:/sys/kernel/debug/qman# echo 0x3c00 > query_fq_np_fields
root@t4240qds:/sys/kernel/debug/qman# cat query_fq_np_fields
  Query FQ Non Programmable Fields Result fqid 0x3c00
  force eligible pending: no
  retirement pending: no
  state: Tentatively Scheduled
  fq_link: 0x0
  odp_seq: 0
  orp_nesn: 0
  orp_ea_hseq: 0
  orp_ea_tseq: 0
  orp_ea_hptr: 0x0
  orp_ea_tptr: 0x0
  pfdr_hptr: 0x0
  pfdr_tptr: 0x0
  is: Ics_surp contains a surplus
  ics_surp: 0
  byte_cnt: 0
  frm_cnt: 0
  ral_sfdr: 0x800
  ra2_sfdr: 0x0
  od1_sfdr: 0x0
  od2_sfdr: 0x0
  od3_sfdr: 0x0
```

FQ in tentatively scheduled state

Snap shot shows that FQ is empty
Buffer Manager (BMan) Debugfs

<table>
<thead>
<tr>
<th>bp_id</th>
<th>free_buffers_avail</th>
<th>bp_depleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>20</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>21</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>22</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>23</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>24</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>25</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>26</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>27</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>28</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>29</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>30</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>31</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>32</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>33</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>34</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>62</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>63</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Note that on earlier slide, sysfs showed that BPID 32 was being used.
SDK Version Compatibility
Unexplained Errors May Be Due to Using Images from Different SDK Version

• Use images from the same SDK version

• Example: images from SDK 1.5 for T4240QDS
 - fsl_fman_ucode_t4240_r2.0_106_4_10.bin
 - rcw_1_1_6_6_1666MHz_rev2.bin
 - ulimage-t4240qds.bin
 - fsl-image-core-t4240qds.ext2.gz.u-boot
 - u-boot-T4240QDS.bin
 - ulimage-t4240ds.dtb or ulimage-t4240qds-usdpaa.dtb

• Feature supported in most recent SDK release may not be supported in previous version
From U-Boot log, you can check:

- U-Boot version
- RCW (copy and paste into QCS PBL Tool)
- FMan ucode version

When you move to a more recent kernel version, be sure to update u-boot, rcw, ucode.
Check SDK Version from Linux

• Starting in SDK v1.4 use the following command:
 root@p4080ds:~# cat /etc/sdk-version
 QorIQ-SDK-V1.4
 root@t4240qds:~# cat /etc/sdk-version
 QorIQ-SDK-V1.5

• Also can check kernel version:
 root@p4080ds:~# cat /proc/version
 Linux version 3.8.10-rt6-QorIQ-SDK-V1.4 (gcc version 4.7.2 (GCC)) #1 SMP Tue May 21 06:38:27 CDT 2013
 root@t4240qds:~# cat /proc/version
 Linux version 3.8.13-rt9-QorIQ-SDK-V1.5 (jenkins@sbuilder137.localdomain) (gcc version 4.7.3 (GCC)) #1 SMP Mon Dec 16 11:25:06 CST 2013
Session Summary

• This session focused on Data Path Acceleration Architecture and debug methods for issues such as packet loss and queue manager enqueue rejections.

• QorIQ SDK documentation: www.freescale.com/infocenter

• QorIQ Packet Analysis Tool: FTF-SDS-F0004 QorIQ Optimization Suite (QOS) Packet Analysis Tool
Introducing The QorIQ LS2 Family

Breakthrough, software-defined approach to advance the world’s new virtualized networks

New, high-performance architecture built with ease-of-use in mind
Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications
Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution
QorIQ LS2 Family
Key Features

High performance cores with leading interconnect and memory bandwidth
- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w/ Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind
- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration
- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

SDN/NFV Switching
Data Center
Wireless Access

Unprecedented performance and ease of use for smarter, more capable networks
See the LS2 Family First in the Tech Lab!

4 new demos built on QorIQ LS2 processors:

- Performance Analysis Made Easy
- Leave the Packet Processing To Us
- Combining Ease of Use with Performance
- Tools for Every Step of Your Design