High Speed I/O Interfaces:

USB 3.0

FTF-NET-F0156

Jimmy Zhao | PE, System and Applications Engineering

APR. 2014
Session Introduction

• Introduction of USB 3.0
 – Understand USB 3.0 architecture
 – The differences between USB 3.0 and USB 2.0

• USB 3.0 on LS1

• Time allocation
 – 45 min presentation
 – 5 min Q&A

• Author
 – Jimmy Zhao, PE, System and Application Engineer, Digital Networking
 – SME for USB, SPI, SDHC
Session Objectives

• After completing this session you will be able to:
 – Know the differences between USB 3.0 and USB 2.0
 – Understand USB 3.0
 ▪ USB 3.0 Feature
 ▪ Layered Protocol Architecture
 • Details on Protocol layer
 • Details on Link layer
 • Details on Physical layer
 – USB 3.0 on LS1
 ▪ Data structure and Memory map
Agenda

• USB 3.0 Introduction
 − Features
 − Architecture
 − Cable/Connectors
 − Layered Protocol Architecture
 ▪ Protocol Layer
 ▪ Link Layer
 ▪ Physical Layer

• LS1 USB Information
 − Introduction
 − Data structure and Register memory map
USB 3.0 Introduction / Features

- 10x performance increase over USB 2.0
 - 5 Gbps vs. 480 Mbps

- Backward compatible
 - Legacy devices continue to work when plugged into new host connector
 - New devices work when plugged into legacy systems albeit at USB 2.0 speeds
 - Existing class drivers continue to work

- Same USB Device Modes
 - Pipe Model
 - USB Framework
 - Transfer Types

- Power Efficient
 - Provides excellent power characteristics (especially for idle links)
 - Both on the device and platform
 - Eliminate need for polling

- Extensible
 - Protocol designed to efficiently scale up
Agenda

- USB 3.0 Introduction
 - Features
 - Architecture
 - Cable/Connectors
 - Layered Protocol Architecture
 - Protocol Layer
 - Link Layer
 - Physical Layer

- LS1 USB Information
 - Introduction
 - Data structure and Register memory map
USB 3.0 Architecture

- Dual-bus Architecture SuperSpeed bus operates concurrently with USB2.0
 - Electrically/mechanically backward and forward compatible
 - Devices discovered / configured at fastest signaling rate
 - Hubs provide additional connection points

- SuperSpeed USB
 - Dual simplex signaling
 - Packets routed to device
 - Hubs store and forward
 - Asynchronous notifications
USB 3.0 Architecture (continued)

- Dual-bus architecture for backward compatibility
- USB 3.0 Host
 - Supports SS and USB 2.0
- USB 3.0 Hub
 - Supports SS and USB 2.0
- USB 3.0 Device
 - Supports SS and HS (FS/LS optional)
 - Concurrent SS and USB 2.0 traffic is not allowed
- FSL USB 2.0 Host: works for couple USB 3.0 HDDs
Agenda

• USB 3.0 Introduction
 - Features
 - Architecture
 - Cable/Connectors
 - Layered Protocol Architecture
 ▪ Protocol Layer
 ▪ Link Layer
 ▪ Physical Layer

• LS1 USB Information
 - Introduction
 - Data structure and Register memory map
USB 3.0 Connectors

- Standard-A Connector
- Standard-B Connector
- Micro-AB/A
USB 3.0 Cable

- Embeds physical USB2 bus in parallel with the USB3 SuperSpeed bus
- USB 2.0 and 3.0 packets operate independently

Note:
- STP: Shield Twisted Pair
- UTP: Unshield Twisted Pair
Agenda

• USB 3.0 Introduction
 - Features
 - Architecture
 - Cable/Connectors
 - Layered Protocol Architecture
 ▪ Protocol Layer
 ▪ Link Layer
 ▪ Physical Layer
• LS1 USB Information
 - Introduction
 - Data structure and Register memory map
USB 3.0 Layered Protocol Architecture
USB 3.0 Protocol Layer

• Convert the requests from the functional layer into transactions consisting of packets
• Manage the end-to-end data flow between the host and the device
• Reliability for packets
 – Sending Acknowledgement packets
 – Request/retransmit lost/corrupted data
 – Packet payload (not in Link)
• Power management
 – Enter reduced power states after a NRDY response
 – Unicast vs. broadcast packets
• Bandwidth management
 – Stream support for performance
 – Asynchronous notification ERDY be device vs. host polling
USB 3.0 Protocol Layer – Packets

• Start from transmitter protocol layer terminated at the receiver protocol layer
• Application data embedded in the data packet Payload
• Host initiates all data transfers.
• Header and Data packet Payload
 – Address triple: device address, endpoint number, direction
 – Route string: the path between the host and the device
• Device response
 – Response immediately: device => host
 – Deferred response: restarted synchronously by the device
USB 3.0 Protocol Layer – Packets Format

- 16-byte Header
 - 12 bytes header information

- Four packet types:
 - Link Management Packet (LMP)
 - Transaction Packet (TP)
 - Data Packet (DP)
 - Isochronous Timestamp Packet (ITP)

- Only DP has a Data Packet Payload (DPP) besides Packet Header

- LMP and ITP not routable
USB 3.0 Protocol Layer – Packet Types

• Link Management Packet (LMP)
 – Sent directly to connected ports between link partners
 – No addressing information
 ▪ Not routable
 – Used to manage the link
 – Subtypes
 ▪ Set Link Function
 ▪ U2 Inactive Timeout
 ▪ Vendor Device Test
 ▪ Port Capability
 ▪ Port Configuration
 ▪ Port Configuration Response
USB 3.0 Protocol Layer – Packet Types

• Isochronous Timestamp Packet (ITP)
 - Only sent out when root port link is in U0 around bus interval boundary
 - Replace SOF/uSOF in USB 2.0
 - Multicast to all active links, no routing information
 - Delayed bit is set when ITP is delayed by Hub
 - Send host SS 125 uSec bus interval/service interval timing to any device
 - Devices:
 ▪ Not respond
 ▪ Lock an internal time base to the host timing
 ▪ Ignore it if delayed flag set
 ▪ Needs to be in U0 if expecting ITP
USB 3.0 Protocol Layer – Packet Types

• Transaction Packet (TP)
 – Control the data flow, configure devices and hubs
 – Subtypes
 ▪ ACK
 ▪ NRDY
 ▪ ERDY
 ▪ STATUS
 ▪ STALL
 ▪ DEV_NOTIFICATION
 ▪ PING
 ▪ PING_RESPONSE
USB 3.0 Protocol Layer – Types of Transaction Packets

- **ACK(0001b)**
 - IN: Received without error
 - OUT: Rx buffers available

- **NRDY(0010b)**
 - IN: No data packets available
 - OUT: Rx buffers unavailable
 - Non-ISO device EP

- **ERDY(0011b)**
 - IN: Data packets available now
 - OUT: Rx buffers available now
 - Non-ISO device EP
USB 3.0 Protocol Layer – Types of Transaction Packets (continued)

- **STALL (0101b)**
 - EP halted / Control transfer invalid
- **DEV_NOTIFICATION (0110b)**
 - Asynchronous change in a device / interface state
 - Function Wake
 - Latency Tolerance
 - Bus Interval Adjustment
- **STATUS (0100b)**
 - Status change of a control transfer
- **PING (0111b)**
 - Ensure device is in U0 before sending the ISO packets
- **PING RESPONSE (1000b)**
 - Confirm device still reminds in U0 until the ISO packets are received
 - Send for every PING
USB 3.0 Protocol Layer – Flow Control

• It is in flow control when a device EP is not ready to send/receive data
• Not apply to Isochronous Eps
• Flow control mechanisms:
 – Sends NRDY/ERDY
 – IN
 • Sends a DP with the EOB = 1
 – OUT
 • Sends an ACK with NumP = 0
• Terminating flow control
 – Device sends an ERDY

NumP:
IN: number of packets requested
OUT: Buffer space availability
USB 3.0 Protocol Layer – Transactions

• Bulk Transactions
• Control Transactions
 – Same as USB 2.0
 ▪ 3 or 2 stages: Setup, Data (optional), Status
 – Max packet size: 512 bytes
• Interrupt Transactions
 – Max packet size: 1024 bytes
 – For infrequent data transfer with guaranteed bounded latency
 – Up to burst of 3 packets / interval
• Isochronous Transactions (No Retry)
 – Max packet size: 1024 bytes
 – Up to 48 packets / interval (375 MB/s)
 – Interval: $125 \mu s \times 2^{(B\text{interval}-1)} \Rightarrow (125 \mu s, \ldots, 4 s)$
USB 3.0 Protocol Layer – Bulk Transaction

• Up to 16 bursts
• Support streams
• Max packet size: 1024 bytes
• Guarantee error-free delivery of data
 – Error detection
 – Retry
• Flow control
• Basic Retry
 – Set Seq# = Seq# of the bad/missing data packet
USB 3.0 Protocol Layer – Bulk Transaction (Burst)

- Host knows max. burst size for EP during enumeration
- Max. number of packets sent without getting an ACK is limited:
 - Min of \(\{(\text{Max. burst size}), \text{NumP}\}\)
- NumP can be incremented anytime by the host or a device
- Burst terminate
 - NumP = 0
 - A short packet

Burst Retry Sequence

IN Burst Retry Sequence

<table>
<thead>
<tr>
<th>Host Tx</th>
<th>Host Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK(0,4)</td>
<td>DATA(0, -)</td>
</tr>
<tr>
<td>ACK(1,4)</td>
<td>DATA(1, -)</td>
</tr>
<tr>
<td>ACK(2,4)</td>
<td>DATA(2, -)</td>
</tr>
<tr>
<td>ACK(2,4)</td>
<td>DATA(3, -)</td>
</tr>
<tr>
<td>ACK(2,4)</td>
<td>Discard</td>
</tr>
<tr>
<td>ACK(3,4)</td>
<td>DATA(4, -)</td>
</tr>
<tr>
<td>ACK(4,4)</td>
<td></td>
</tr>
<tr>
<td>ACK(5,4)</td>
<td></td>
</tr>
</tbody>
</table>

OUT Burst Retry Sequence

<table>
<thead>
<tr>
<th>Host Tx</th>
<th>Host Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA(0, -)</td>
<td>ACK(1,4)</td>
</tr>
<tr>
<td>DATA(1, -)</td>
<td>ACK(2,4)</td>
</tr>
<tr>
<td>DATA(2, -)</td>
<td>ACK(3,4)</td>
</tr>
<tr>
<td>DATA(3, -)</td>
<td>ACK(4,4)</td>
</tr>
<tr>
<td>DATA(4, -)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Data**
 - \(\text{DATA}(n, -)\)
- **ACK**
 - \(\text{ACK}(n, m)\)
- **Error**
 - Discard
- **Retry Set**
USB 3.0 Protocol Layer – Bulk Transaction (SS Streaming)

- Multiplexing multiple independent logic data streams
- Up to 65533 streams
- Managed by the Stream Protocol
 - Host or a device setup CStream ID (Current Stream) associated with an EP
 - CStream ID
 - Host: To select the command/operation specific EP buffers for data transfer
 - Device: To select the Function Data buffers
USB 3.0 Link Layer

- Manage the port-port flow of data between the host and the device
- Manage/control the logic portion of the link: reliability, flow control, data integrity, link power management

- Link Training
 - Link Training and Status State Machine (LTSSM)
 - Bit-Lock, Symbol-Lock, and Rx Equalization

- Power Management
 - 4 Link Power States: U0, U1, U2, U3
 - Low Frequency Periodic Signaling (LFPS)

- Error Handling
 - Bit, Link, Packet errors
USB 3.0 Link Layer – Power Management

<table>
<thead>
<tr>
<th>Link State</th>
<th>Description</th>
<th>Key Characteristics</th>
<th>State Transition Initiator</th>
<th>Exit Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>Link Active</td>
<td>Operational State</td>
<td>N/A</td>
<td>NA</td>
</tr>
<tr>
<td>U1</td>
<td>Link Idle - Fast Exit</td>
<td>RX & TX Circuit Quiesced</td>
<td>Hardware</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PLL remains on / Clock gating / P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>Link Idle - Slow Exit</td>
<td>Clock Generation Circuit Quiesced</td>
<td>Hardware</td>
<td>μs to ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PLL can be turned off / Clock gating / P2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>Link Suspend</td>
<td>Portions of device power removed</td>
<td>Entry: Software</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Clock generation circuit can be turned off</td>
<td>Exit: Hardware or Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/ Clock gating / P3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- U0 to U1 entry based on
 - Downstream port inactivity time
 - Port_U1_TimeOut (Can be as low as 10us)
 - Device hardware initiated
 - Based on implementation specific knowledge

- In both cases - Always initiated with Link command
 \texttt{LGO_U1 -> LAU}
USB 3.0 Link Layer – Link States

- **Connection**
 - Idle: Rx.Detect

- **Link Training**
 - Polling states

- **Normal State**: U0
 - Descriptors

- **Low Power States**
 - U1
 - U2
 - U3
USB 3.0 Link Layer – Link Training

<table>
<thead>
<tr>
<th>Packet</th>
<th>TERM State</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ON</td>
<td>7.235.026.592</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets</th>
<th>Type</th>
<th>Duration</th>
<th>ELdts</th>
</tr>
</thead>
<tbody>
<tr>
<td>972</td>
<td>LFPS</td>
<td>1.016 us</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets</th>
<th>Type</th>
<th>Duration</th>
<th>ELdts</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>LFPS</td>
<td>1.064 us</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>IPS</th>
<th>Count</th>
<th>Time</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001-2654</td>
<td></td>
<td>D21</td>
<td>7.240.586.928</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets</th>
<th>Type</th>
<th>Duration</th>
<th>ELdts</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>TS1 Data</td>
<td>1.128 us</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>Link Config</th>
<th>Loopback</th>
<th>Scrambling</th>
</tr>
</thead>
<tbody>
<tr>
<td>135627-135657</td>
<td>Normal</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>Link Config</th>
<th>Loopback</th>
<th>Scrambling</th>
</tr>
</thead>
<tbody>
<tr>
<td>135528-135565</td>
<td>Normal</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>TS1 Data</th>
<th>Time</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>135559-183082</td>
<td></td>
<td>14.000 ns</td>
<td>7.244.957.816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>TS2 Data</th>
<th>Time</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>135669-183081</td>
<td></td>
<td>18.000 ns</td>
<td>7.245.958.310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>TS2 Data</th>
<th>Time</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>183003-183113</td>
<td></td>
<td>18.000 ns</td>
<td>7.245.722.284</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>TS2 Data</th>
<th>Time</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>183084-183126</td>
<td></td>
<td>956.000 ns</td>
<td>7.245.722.302</td>
</tr>
</tbody>
</table>
USB 3.0 Link Layer – Header Packet Framing

- Header Packet Framing (20 Bytes)
 - 4 bytes of Packet start framing
 - SHP, SHP, SHP, EPF
 - 12 bytes Packet Header
 - LMPs, TPs, ITPs, DPHs
 - 2 byte CRC
 - 2 bytes Link Control Word
USB 3.0 Link Layer – Link Command

- For data integrity, flow control, link power management
- Only from Transmitter link layer to Receiver link layer

<table>
<thead>
<tr>
<th>Link Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGOOD_n</td>
<td>Good header packet</td>
</tr>
<tr>
<td>LRTY</td>
<td>Retry header packet</td>
</tr>
<tr>
<td>LBAD</td>
<td>Bad header packet</td>
</tr>
<tr>
<td>LCRD_x</td>
<td>Rx header buffer credit index</td>
</tr>
<tr>
<td>LGO_U1/2/3</td>
<td>Request entry to U1/2/3</td>
</tr>
<tr>
<td>LAU</td>
<td>Accept PM request</td>
</tr>
<tr>
<td>LXU</td>
<td>Reject PM request</td>
</tr>
<tr>
<td>LPMA</td>
<td>LAU handshake</td>
</tr>
<tr>
<td>LUP/LDN U0</td>
<td>Link Up/Down</td>
</tr>
</tbody>
</table>

Packet Acknowledgement and Error Recovery
Packet Flow Control
Link Power Management

8-Symbol Link Command
MSB
LSB (transmitted first)
Start Link Command
SLC
SLC
SLC
EPF
End Packet Framing
Link Command Word
Link Command Information

byte 1 byte 0
CRC-5 Link Command Information
USB 3.0 Link Layer – Link Command

• LGOOD_n
 - Everything Good

• LBAD
 - Invalid header packet
 - Bad/corrupted CRC
 - Resend all header packets after the last one with LGOOD_n

• LRTY
 - Send before resending the 1st header packet after LBAD

• LCRD_x (x: A, B, C, D) Header Buffer Credit index
 - Indicate a single Rx Header Buffer Credit is available
 - Sent after received packet meet:
 ▪ LGOOD_n is sent
 ▪ Header packet has been processed, a Rx Header Buffer Credit is available
USB 3.0 Link Layer – Link Command

- **LGO_U1/U2/U3**
 - Requesting enter to U1/U2/U3
 - Upstream port must accept U3
- **LAU**
 - A port accepting the request to enter U1/U2
- **LXU**
 - A port rejecting the request to enter U1/U2
- **LPMA**
 - A port receiving LAU
- **LUP**
 - Device is in U0
 - Sent by an upstream port every 10 uS when there is no packets or other link commands to be sent
USB 3.0 Link Layer – Link Command, Retry

Tx Link Partner
- **Tx Header Buffer**
- **Tx Header Sequence Number:** 1
- **Ack’ed Tx Header Sequence Number:** 1
- **Remote Rx Header Buffer Credit:** 4
- **Rx LCRD_x Index:** B

Rx Link Partner
- **Rx Header Buffer**
- **Rx Header Sequence Number:** 1
- **Local Rx Header Buffer Credit:** 4
- **Remote Rx LCRD_x Index:** B

Annotations:
- HP, HSEQ#=0
- LBAD
- LRTY
- HP, HSEQ#=0
- LCRD_A
USB 3.0 Physical Layer

- Actual physical connection between 2 ports
 - Two differential data pairs
 - One Transmit
 - One Receive
- 8b/10b encode/decode
 - ANSI X3.230-1994
- Scramble/descramble
- Spread Clock CDR (Clock Data Recovery)
- Elasticity Buffer/Skips
- Low Frequency Period Signaling (LFPS)
USB 3.0 Physical Layer (continued)

Transmitter Functions

D-Code/K-Code

x 8

D/K

Scrambler (D only)

x 8

Core Clock

8b/10b Encoding

x 10

Parallel to Serial

Bit Clock

x 1

Transmitter Differential Driver

D+ D-

Receiver Functions

In

D+ D-

Differential Receiver and Equalization

Bit Rate

Clock Recovery Circuit

Recovered Bit Clock

Data Recovery Circuit (DRC)

x 1

RxPolarity

Serial to Parallel

K28.5 Detection

RxValid

x 10

Recovered Symbol Clock

Elastic Buffer

RxDataK

RxCodeErr

RxDispErr

x 10

Core Clock

Desynchronizing (D only)

x 8
USB 3.0 Physical Layer - PIPE

- PCLK from PHY to MAC: 500/250/125 MHz
- Rx and Tx Data: 8-, 16-, or 32-bits
- Rx and Tx DataK: 1-, 2- or 4-bits
- Command Signals: 12- or 16-bits
 - PHYMode, Rxdetect/loopback, TxElecIdle, RxPolority, TxEqua, TxComplicance, Rate, TxMargin, TxDeep, RxTerm, TxSwing, etc.
- Status Signals: 6- or 7-bits
 - PHYStatus, RxValid, RxStatus, RxElecIdle, PowerPresent
Agenda

- **USB 3.0 Introduction**
 - Features
 - Architecture
 - Cable/Connectors
 - Layered Protocol Architecture
 - Protocol Layer
 - Link Layer
 - Physical Layer

- **LS1 USB Information**
 - Introduction
 - Data structure and Register memory map
LS1 Architecture

• One USB 2.0 with ULPI (UTMI+Low Pin Interface)
• OTG (On The Go) 2.0
• USB Dual-Role Controller
• One USB 3.0 with internal PHY
 - Super-speed (SS) – 5 Gbps
 - High-Speed (HS) – 480 Mbps
 - Full-Speed (FS) – 12 Mbps
 - Low-Speed (LS) – 2 Mbps (only for USB 2.0 host mode)
 - Support 8 programmable, bidirectional endpoints
• Compatible with xHCI spec
USB 3.0 Controller and PHY

SoC Bus

- System CPU
- System Memory
- Application

USB Controller
- Bus Interface, Registers, List Processor
- USB 3.0 MAC & LINK
- Buffer Management
- USB 2.0 MAC

USB PHY
- SuperSpeed Function (PIPE 3)
- High-Speed Function (UTMI)

Tx Data FIFO RAM
Rx Data FIFO RAM
Descriptor Register Cache RAM

Power supplies, Clocks, …

tx <#> _p
tx <#> _m
rx <#> _p
rx <#> _m

DP <#>, DM <#>
USB 3.0 eXtensible Host Controller Interface (xHCl)

CCSR
(Configuration, Control, and Status Register)
USB Base Address (310_0000H)
USB 3.0 Controller Memory Map/Registers

- USB 3.0 Registers
 - 32-bits wide
 - Address: 32-bit block aligned
 - Access the register
 - Only 32-bit units
 - 8-bit or 16-bit illegal

- Global Registers
- Device Registers
- OTG Registers
- xHCI Host Registers
USB 3.0 Host Memory Map/Registers

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>ACRONYM</th>
<th>External Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>CAPLENGTH</td>
<td></td>
</tr>
<tr>
<td>0x0004</td>
<td>HCSPARAMS1</td>
<td></td>
</tr>
<tr>
<td>0x0008</td>
<td>HCSPARAMS2</td>
<td></td>
</tr>
<tr>
<td>0x000C</td>
<td>HCSPARAMS3</td>
<td></td>
</tr>
<tr>
<td>0x0010</td>
<td>HCCPARAMS</td>
<td></td>
</tr>
<tr>
<td>0x0014</td>
<td>DBOFF</td>
<td></td>
</tr>
<tr>
<td>0x0018</td>
<td>RTSOFF</td>
<td></td>
</tr>
<tr>
<td>0x001C</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x0020</td>
<td>USBCMD</td>
<td></td>
</tr>
<tr>
<td>0x0024</td>
<td>USBSTS</td>
<td></td>
</tr>
<tr>
<td>0x0028</td>
<td>PAGESIZE</td>
<td></td>
</tr>
<tr>
<td>0x002C</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x0033</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x0034</td>
<td>DNCTRL</td>
<td></td>
</tr>
<tr>
<td>0x0038</td>
<td>CRCR</td>
<td></td>
</tr>
<tr>
<td>0x003C</td>
<td>CRCR</td>
<td></td>
</tr>
<tr>
<td>0x0040</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x004F</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x0050</td>
<td>DCBAAP</td>
<td></td>
</tr>
<tr>
<td>0x0054</td>
<td>DCBAAP</td>
<td></td>
</tr>
<tr>
<td>0x0058</td>
<td>CONFIG</td>
<td></td>
</tr>
<tr>
<td>0x005C</td>
<td>Rsvd</td>
<td></td>
</tr>
<tr>
<td>0x041F</td>
<td>Rsvd</td>
<td></td>
</tr>
</tbody>
</table>

HOST REGISTERS

eXtensible Host Controller Capability Registers

HOST CONTROLLER OPERATIONAL REGISTERS

- Rsvd:20'hx
- Rsvd:16'hx
- Rsvd:32'hx
- Rsvd:13'hx
- Rsvd:32'h0
- Rsvd:6'hx
- MaxSlotsEn:8'b0

ACCESS TYPES

- R_W
- RO
- RU
- WO
- R_WS_SC
- R_SS_WC
- Rsvd or Rs
USB 3.0 Host Memory Map/Registers

Host Registers

<table>
<thead>
<tr>
<th>Offset</th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0420</td>
<td>PORTSC</td>
<td>Host Controller Port Register Set</td>
</tr>
<tr>
<td>0x0424</td>
<td>PORTMSC</td>
<td>Rsvd: 11'hx</td>
</tr>
<tr>
<td>0x0428</td>
<td>PORTU</td>
<td>Rsvd: 16'hx</td>
</tr>
<tr>
<td>0x042C</td>
<td>PORTLPUC</td>
<td>Rsvd: 32'hx</td>
</tr>
</tbody>
</table>

Host Controller Runtime Registers

- **Rsvd: 18'hx**
- **Microframe Index**: Rsvd 32'hx

Interrupter Registers

- **IMODC**: Rsvd: 30'hx
- **IMODI: 16'd4000**: Event Ring Segment Table Size: 16'b0
- **Event Ring Segment Table Base Address Register: 26'b0**
- **Event Ring Segment Table Base Address Register: 32'b0**
- **Event Ring Dequeue Pointer: 26'b0**
- **Event Ring Dequeue Pointer: 32'b0**

Doorbell Register

- **DB Stream ID**
- **xHCI Extended Capabilities**: Rsvd: 8'hx
- **DB Target**

USB Legacy Support Capability

- **USBLEGSUP**: m9, m8, m7
- **USBLEGCLSTS**: m6, m5, m4, m3, m2, m1, m0
- **xHCI Supported Protocol Capability (USB 2.0)**
- **MajorRevision: 8'h2**: MinorRevision: 8'h0
- **Name String: "USB"**: Next Capability Pointer
- **Rsvd: 27'hx**: Protocol Slot Type: 5'b0
Session Summary

• Discussed the differences between USB 3.0 and USB 2.0

• Described USB 3.0 Feature

• Presented Layered Protocol Architecture
 – Details on Protocol layer
 – Details on Link layer
 – Details on Physical layer

• Discussed USB 3.0 on LS1
 – Data structure and Memory map
For Further Information

• URLs
 - http://www.usb.org/developers/ssusb/

• Contact information
 – Jimmy Zhao, PE, System and Applications Engineering, DN
 – Jimmy.zhao@freescale.com
Introducing The QorIQ LS2 Family

Breakthrough, software-defined approach to advance the world’s new virtualized networks

New, high-performance architecture built with ease-of-use in mind
Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications
Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution
QorIQ LS2 Family
Key Features

SDN/NFV Switching

Data Center

Wireless Access

High performance cores with leading interconnect and memory bandwidth
- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind
- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration
- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

Unprecedented performance and ease of use for smarter, more capable networks
See the LS2 Family First in the Tech Lab!

4 new demos built on QorIQ LS2 processors:

- Performance Analysis Made Easy
- Leave the Packet Processing To Us
- Combining Ease of Use with Performance
- Tools for Every Step of Your Design