Simulation of Packaged Component Electrical Performance

FTF-SDS-F0024

Neil Tracht | Package Design Manager

APR 2014
Session Introduction

- **Electrical Simulation of Package and Assembly**
 - The integrated circuit package is a crucial element in overall system performance.
 - Power and signal integrity within the package are essential for robust system performance.
 - Freescale conducts extensive electrical simulation of the package and assembly design to assure the performance of Freescale products.
 - This presentation will provide an overview of aspects of this modeling and simulation for automotive and microcontroller packages.

- **Presentation by Neil Tracht – Manager, Wirebond Package Design & Electrical Simulation**
Session Objectives

• After completing this session you will be able to:
 – Describe methods for package parasitic extraction
 – Name the types of electrical analysis preformed on IC packages
 – Describe how the electrical performance of the IC package impacts system performance
 – Describe how package parasitics are incorporated into Input Output Buffer Information Specification (IBIS) Models
Agenda

• Package analysis tools
• Power and signal integrity
 − PI/SI background
 − Power supply noise example
 − Signal integrity example
• Package design considerations
 − Substrate
 − Leadframe
 − Wire diameter and wire material
 − Current capacity
• Input Output Buffer Information Specification (IBIS) models
Package Analysis Tools
Package Electrical Analysis Tools

- Freescale uses a variety of 3D solvers to extract and model integrated circuit packages
- Full Package Analysis
 - Sigrity Power SI
 - Nimbic nWave
- Partial Package Analysis
 - Ansys HFSS and Q3D
 - Computer Simulation Technology (CST) Microwave Studio
Types of Packages

- Leadframe
 - QFP
 - QFN

- Substrate
 - BGA
 - LGA
 - 2-Layer and 4-Layer
 - SiP

- Redistributed Chip Package (RCP)
 - BGA
 - LGA
 - SiP
Understanding Package Parasitics
Package Parasitics

- **Resistance (R)**
 - Resistance in package conductors will create a voltage drop

 \[V = IR \]

 - The DC resistance of a rectangular conductor is given by

 \[R_{DC} = \frac{\rho \cdot \text{len}}{w \cdot t} \]

 - \(\rho \) is the bulk resistivity of the conductor
 - \(w \) is the width
 - \(t \) is the thickness
 - \(\text{len} \) is the length

- **AC Resistance**
 - Governed by “Skin Effect”
 - Skin Effect causes the current to crowd to the conductor surface
 - Depth is a function of square root of frequency
Package Parasitics

- Capacitance
 - Capacitance exists between any 2 conductors
 - The “self” capacitance - defined as the capacitance between a lead and a chosen reference conductor with no other conductors present
 - The “mutual” capacitance between 2 leads - the capacitance between the 2 leads with no other conductors present
Package Parasitics

- **Inductance**
 - Inductance will cause a voltage drop

\[V = L \frac{dI}{dt} \]

- Self Inductance is the inductance of an individual loop
- Nearby loops have a mutual inductance
- Voltage over a loop depends on current in all loops

\[V_1 = \frac{d}{dt} \left(L_1 I_1 + L_{12} I_2 + L_{13} I_3 + L_{14} I_4 \right) \]

- **Self Inductance**
- **Mutual Inductance**
Package Design Considerations
Design Considerations

• Substrate Package Design Considerations
 - Identify the critical signal nets and critical electrical specifications
 - Ball Map Plan package ball locations for critical electrical specifications
 - Supply network
 ▪ Minimize the power and ground network inductance and resistance
 - Critical signals
 ▪ Minimize the inductance and resistance for the critical signal nets
 ▪ Differential pairs
 • Differential pairs should be optimized for routing
 • Balance/ de-skew the differential pairs, data lanes
 ▪ Signals requiring isolation
 • Avoid switching nets adjacent to data lanes
 • Shield the critical signal nets with ground net
Design Considerations

• Substrate Package Design Considerations
 - Route VSS as a shield for the critical signal nets

Critical net VSS net
Design Considerations

- Substrate Package Design Considerations
 - DDR nets/differential nets balanced for electrical performance
Design Considerations

- Substrate Package Design Considerations
 - Continuous grounding is critical for high speed nets
 - Typical 4-Layer Package
 - Metal 1 – Signal Routing
 - Metal 2 – Ground
 - Metal 3 – Supplies
 - Metal 4 – BGA Pads and minimal routing
 - Critical nets should not route across breaks in the ground layer
Optimizing Power Integrity
Power Integrity

• VDD_LV - Time-Domain Voltage Waveform
 - Core noise is 78.52mV
 - Core noise is 6.54%
 - Above the +/-6% noise spec

Noise in mV and %

<table>
<thead>
<tr>
<th>Net</th>
<th>Noise, mV (overshoot/undershoot)</th>
<th>Noise % (overshoot/undershoot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD_LV</td>
<td>42.51/-78.52</td>
<td>3.54/-6.54</td>
</tr>
</tbody>
</table>
Power Integrity

- VDD_LV - Time-Domain Voltage Waveform
 - Possible Solutions
 - Reduced Power Step
 - Core noise is 70.52mV
 - Core noise is 5.88%
 - On die bypass capacitance
 - Core noise is 70.86mV
 - Core noise is 5.90%
 - Solutions with the +/-6% noise spec
Wire Diameter

• Bond wire diameter is set by two limiting factors
 – Current capacity of the bond wire
 ▪ Limited by self-heating of the wire – a function of wire length and current
 – Voltage drop of package supply network
 ▪ Limited by supply noise margins

• Comparison of 18 um and 23 um diameter wire
 – Current Capacity
 ▪ Highest current die pad with longest bond wire identified
 • Required current - 38.04mA VDD supply
 • Current capacity of 23 um wire – 249.8mA
 • Current capacity of 18 um wire – 151.1mA

 ▪ Smaller diameter wire will meet current capacity requirements
Wire Diameter

- Comparison of 18 μm and 23 μm diameter wire
 - Voltage supply margin
 - Smaller diameter wire reduces supply margin by ~3.4mV
 - Supply budget is ±6% or ±90mV leaving ~34.5mV of margin
 - Smaller diameter wire meets supply margin requirements

<table>
<thead>
<tr>
<th>Wire Diameter</th>
<th>Overshoot/Undershoot mV</th>
<th>Overshoot/Undershoot percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23μm</td>
<td>0.11/-52.11</td>
<td>0.01/-3.47</td>
</tr>
<tr>
<td>18μm</td>
<td>-3.94/-55.47</td>
<td>-0.26/-3.70</td>
</tr>
</tbody>
</table>
Leadframe Design

- QFP Power Bar Design
 - Options to connect power bar
 - Fixed lead versus jumper wires
 - Jumper wires allow flexibility for assigning power pins
 - Jumper wires can be used without exceeding static IR drop

<table>
<thead>
<tr>
<th>Supply Name</th>
<th>DC Resistance mOhms</th>
<th>Static IR Drop mV</th>
<th>Static IR Drop Spec mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD_O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Lead</td>
<td>15.30</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Jumper Wire</td>
<td>30.72</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>
Maintaining Signal Integrity
Signal Integrity

- Electrical simulation can be used to optimize via placement for improved isolation at 77GHz
 - Two alternated designs evaluated

Version 1

Version 2

- Added Vias
- Alternate Via Space
Signal Integrity

- Containment of electromagnetic fields
 - Version 2 shows improved containment of electromagnetic fields

Greatly improved Isolation
Signal Integrity

- Containment of electromagnetic fields
 - Version 2 shows improved containment of electromagnetic fields
IBIS Models
IBIS Models

- Input Output Buffer Information Specification (IBIS)
 - Method of providing the Input/Output device characteristics through V/I data
 - Tabular description of the IO buffer characteristics
 - Freescale provides IBIS models by combining Pad Driver Models with Package RLC’s into a single IBIS.
 - Package RLC’s are extracted from the completed package design using the same extraction techniques used for Power and Signal integrity inside the package.
Session Summary

• The integrated circuit package is a vital portion of overall system performance

• A well designed package will
 – Maintain power integrity
 – Insure signal integrity

• IBIS models including package parasitics enable board and system level simulation
For Further Information

- Signal Integrity http://bethesignal.com

- My Contact information
 - Neil Tracht – Manager of Package Design and Electrical Modeling
 - N.tracht@freescale.com
Closing

• By now, you should be able to:
 − Describe package parasitics
 − Describe analysis techniques used to insure robust package performance
 − Describe package design considerations used to optimize package performance